Rapid translocation of nanoparticles from the lung airspaces to the body


Nano-size particles show promise for pulmonary drug delivery, yet their behavior after deposition in the lung remains poorly understood. In this study, a series of near-infrared (NIR) fluorescent nanoparticles were systematically varied in chemical composition, shape, size and surface charge, and their biodistribution and elimination were quantified in rat models after lung instillation. We demonstrate that nanoparticles with hydrodynamic diameter (HD) less than ≈34 nm and a noncationic surface charge translocate rapidly from the lung to mediastinal lymph nodes. Nanoparticles of HD < 6 nm can traffic rapidly from the lungs to lymph nodes and the bloodstream, and then be subsequently cleared by the kidneys. We discuss the importance of these findings for drug delivery, air pollution and carcinogenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic structures of inorganic/organic hybrid nanoparticles (INPs, 800 nm emission) and organic nanoparticles (ONPs, 700 nm emission) and their size- and charge-dependent translocation.
Figure 2: Biodistribution, clearance and histological analysis of INPs in Sprague-Dawley rats.


  1. 1

    Janib, S.M., Moses, A.S. & Mackay, J.A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 3, 1–2 (2010).

    Google Scholar 

  2. 2

    Zrazhevskiy, P., Sena, M. & Gao, X. Designing multifunctional quantum dots for bioimaging, detection, and drug delivery. Chem. Soc. Rev. 3, 1–2 (2010).

    Google Scholar 

  3. 3

    Choi, H.S. & Frangioni, J.V. Nanoparticles for biomedical imaging: Fundamentals of clinical translation. Mol. Imaging 9, 291–310 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4

    Courrier, H.M., Butz, N. & Vandamme, T.F. Pulmonary drug delivery systems: recent developments and prospects. Crit. Rev. Ther. Drug Carrier Syst. 19, 425–498 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Tsuda, A., Rogers, R.A., Hydon, P.E. & Butler, J.P. Chaotic mixing deep in the lung. Proc. Natl. Acad. Sci. USA 99, 10173–10178 (2002).

    CAS  Article  Google Scholar 

  6. 6

    Oberdorster, G. Pulmonary effects of inhaled ultrafine particles. Int. Arch. Occup. Environ. Health 74, 1–8 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Mills, N.L. et al. Adverse cardiovascular effects of air pollution. Nat. Clin. Pract. Cardiovasc. Med. 6, 36–44 (2009).

    CAS  Article  Google Scholar 

  8. 8

    Wichmann, H.E. et al. Daily mortality and fine and ultrafine particles in Erfurt, Germany part I: role of particle number and particle mass. Res. Rep. Health Eff. Inst. November, 5–86, discussion 87–94 (2000).

  9. 9

    Moller, W. et al. Deposition, retention, and translocation of ultrafine particles from the central airways and lung periphery. Am. J. Respir. Crit. Care Med. 177, 426–432 (2008).

    Article  Google Scholar 

  10. 10

    Harmsen, A.G., Muggenburg, B.A., Snipes, M.B. & Bice, D.E. The role of macrophages in particle translocation from lungs to lymph nodes. Science 230, 1277–1280 (1985).

    CAS  Article  Google Scholar 

  11. 11

    Semmler-Behnke, M. et al. Biodistribution of 1.4- and 18-nm gold particles in rats. Small 4, 2108–2111 (2008).

    CAS  Article  Google Scholar 

  12. 12

    Geiser, M. et al. The role of macrophages in the clearance of inhaled ultrafine titanium dioxide particles. Am. J. Respir. Cell Mol. Biol. 38, 371–376 (2008).

    CAS  Article  Google Scholar 

  13. 13

    Nemmar, A. et al. Ultrafine particles affect experimental thrombosis in an in vivo hamster model. Am. J. Respir. Crit. Care Med. 166, 998–1004 (2002).

    Article  Google Scholar 

  14. 14

    Kreyling, W.G. et al. Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. J. Toxicol. Environ. Health A 65, 1513–1530 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Semmler, M. et al. Long-term clearance kinetics of inhaled ultrafine insoluble iridium particles from the rat lung, including transient translocation into secondary organs. Inhal. Toxicol. 16, 453–459 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Frangioni, J.V. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7, 626–634 (2003).

    CAS  Article  Google Scholar 

  17. 17

    Gioux, S. et al. High-power, computer-controlled, light-emitting diode-based light sources for fluorescence imaging and image-guided surgery. Mol. Imaging 8, 156–165 (2009).

    CAS  Article  Google Scholar 

  18. 18

    Troyan, S.L. et al. The FLARE™ intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann. Surg. Oncol. 16, 2943–2952 (2009).

    Article  Google Scholar 

  19. 19

    Choi, H.S. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    CAS  Article  Google Scholar 

  20. 20

    Choi, H.S. et al. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 9, 2354–2359 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Burns, A.A. et al. Fluorescent silica nanoparticles with efficient urinary excretion for nanomedicine. Nano Lett. 9, 442–448 (2009).

    CAS  Article  Google Scholar 

  22. 22

    Zhang, L.W. & Monteiro-Riviere, N.A. Mechanisms of quantum dot nanoparticle cellular uptake. Toxicol. Sci. 110, 138–155 (2009).

    CAS  Article  Google Scholar 

  23. 23

    Brown, D.M., Wilson, M.R., MacNee, W., Stone, V. & Donaldson, K. Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol. Appl. Pharmacol. 175, 191–199 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Duncan, R. Polymer conjugates as anticancer nanomedicines. Nat. Rev. Cancer 6, 688–701 (2006).

    CAS  Article  Google Scholar 

  25. 25

    Liu, W. et al. Compact cysteine-coated CdSe(ZnCdS) quantum dots for in vivo applications. J. Am. Chem. Soc. 129, 14530–14531 (2007).

    CAS  Article  Google Scholar 

  26. 26

    Choi, H.S. et al. Design considerations for tumour-targeted nanoparticles. Nat. Nanotechnol. 5, 42–47 (2010).

    CAS  Article  Google Scholar 

  27. 27

    Kim, S. et al. Near-infrared fluorescent type II quantum dots for sentinel lymph node mapping. Nat. Biotechnol. 22, 93–97 (2004).

    CAS  Article  Google Scholar 

  28. 28

    Insin, N. et al. Incorporation of iron oxide nanoparticles and quantum dots into silica microspheres. ACS Nano 2, 197–202 (2008).

    CAS  Article  Google Scholar 

Download references


We thank R. Oketokoun and S. Gioux for help with developing the FLARE imaging system and E.P. Lunsford of the Longwood Small Animal Imaging Facility for assistance with SPECT/CT imaging. The Biophysical Instrumentation Facility for the Study of Complex Macromolecular Systems (National Science Foundation-0070319 and US National Institutes of Health (NIH) GM68762) is gratefully acknowledged. We thank W. Liu and B.I. Ipe for providing quantum dots, L. Moffitt for editing, and L. Keys and E. Trabucchi for administrative support. This work was supported in part by NIH grant HL054885 (A.T.), HL070542 (A.T.), HL074022 (A.T.) and R01-CA-115296 (J.V.F.).

Author information




H.S.C., Y.A., J.H.L., S.H.K., A.M., N.I. and A.T. performed the experiments. H.S.C., M.G.B., M.S.-B., A.T. and J.V.F. reviewed, analyzed and interpreted the data. H.S.C., A.T. and J.V.F. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to John V Frangioni or Akira Tsuda.

Ethics declarations

Competing interests

All FLARE technology is owned by Beth Israel Deaconess Medical Center, a teaching hospital of Harvard Medical School. As inventor, Dr. Frangioni may someday receive royalties if products are commercialized. Dr. Frangioni is the founder and unpaid director of The FLARE Foundation, a non-profit organization focused on promoting the dissemination of medical imaging technology for research and clinical use.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–6 (PDF 1442 kb)

Supplementary Video 1

Real-Time Translocation of NPs from the Lung to a Mediastinal Lymph Node (ZIP 1332 kb)

Supplementary Video 2

Real-Time Clearance of NPs from Kidneys to Bladder (ZIP 3585 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Choi, H., Ashitate, Y., Lee, J. et al. Rapid translocation of nanoparticles from the lung airspaces to the body. Nat Biotechnol 28, 1300–1303 (2010). https://doi.org/10.1038/nbt.1696

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing