Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells

This article has been updated

Abstract

Surprisingly little is known about the effects of the physical microenvironment on hemopoietic stem and progenitor cells. To explore the physical effects of matrix elasticity on well-characterized primitive hemopoietic cells, we made use of a uniquely elastic biomaterial, tropoelastin. Culturing mouse or human hemopoietic cells on a tropoelastin substrate led to a two- to threefold expansion of undifferentiated cells, including progenitors and mouse stem cells. Treatment with cytokines in the presence of tropoelastin had an additive effect on this expansion. These biological effects required substrate elasticity, as neither truncated nor cross-linked tropoelastin reproduced the phenomenon, and inhibition of mechanotransduction abrogated the effects. Our data suggest that substrate elasticity and tensegrity are important mechanisms influencing hemopoietic stem and progenitor cell subsets and could be exploited to facilitate cell culture.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tropoelastin increased mouse hemopoietic stem and progenitor cells.
Figure 2: Tropoelastin increased human hemopoietic progenitor cells.
Figure 3: Effect of tropoelastin truncations and cross-linking on the ability of mouse hemopoietic cells to respond to tropoelastin.
Figure 4: QCM-D analysis of collagen, fibronectin, tropoelastin and ELN27-540 binding to oxidized polystyrene, and the effect of myosin II heavy chain and myosin light chain kinase inhibitors on the ability of mouse hemopoietic cells to respond to tropoelastin.

Similar content being viewed by others

Change history

  • 27 April 2011

    In the version of this article initially published, the description of the grade of tropoelastin used was incorrect. The correct description is “research and development (R&D)-grade tropoelastin (Elastagen Pty. Ltd.).” The error has been corrected in the HTML and PDF versions of the article.

References

  1. Sauvageau, G., Iscove, N.N. & Humphries, R.K. In vitro and in vivo expansion of hematopoietic stem cells. Oncogene 23, 7223–7232 (2004).

    Article  CAS  Google Scholar 

  2. Carter, W.G. & Wayner, E.A. Characterization of the class III collagen receptor, a phosphorylated, transmembrane glycoprotein expressed in nucleated human cells. J. Biol. Chem. 263, 4193–4201 (1988).

    CAS  PubMed  Google Scholar 

  3. Ghaffari, S., Dougherty, G.J., Lansdorp, P.M., Eaves, A.C. & Eaves, C.J. Differentiation-associated changes in CD44 isoform expression during normal hematopoiesis and their alteration in chronic myeloid leukemia. Blood 86, 2976–2985 (1995).

    CAS  PubMed  Google Scholar 

  4. Williams, D.A., Rios, M., Stephens, C. & Patel, V.P. Fibronectin and VLA-4 in haematopoietic stem cell-microenvironment interactions. Nature 352, 438–441 (1991).

    Article  CAS  Google Scholar 

  5. Wilson, A. & Trumpp, A. Bone-marrow haematopoietic-stem-cell niches. Nat. Rev. Immunol. 6, 93–106 (2006).

    Article  CAS  Google Scholar 

  6. Janmey, P.A. & McCulloch, C.A. Cell mechanics: integrating cell responses to mechanical stimuli. Annu. Rev. Biomed. Eng. 9, 1–34 (2007).

    Article  CAS  Google Scholar 

  7. Ainsworth, C. Cell biology: stretching the imagination. Nature 456, 696–699 (2008).

    Article  CAS  Google Scholar 

  8. Adamo, L. et al. Biomechanical forces promote embryonic haematopoiesis. Nature 459, 1131–1135 (2009).

    Article  CAS  Google Scholar 

  9. Engler, A.J., Sen, S., Sweeney, H.L. & Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  10. Knowles, T.P. et al. Role of intermolecular forces in defining material properties of protein nanofibrils. Science 318, 1900–1903 (2007).

    Article  CAS  Google Scholar 

  11. Holst, J. et al. Generation of T-cell receptor retrogenic mice. Nat. Protoc. 1, 406–417 (2006).

    Article  CAS  Google Scholar 

  12. Holst, J., Vignali, K.M., Burton, A.R. & Vignali, D.A. Rapid analysis of T-cell selection in vivo using T cell-receptor retrogenic mice. Nat. Methods 3, 191–197 (2006).

    Article  CAS  Google Scholar 

  13. Holst, J. et al. Scalable signaling mediated by T cell antigen receptor-CD3 ITAMs ensures effective negative selection and prevents autoimmunity. Nat. Immunol. 9, 658–666 (2008).

    Article  CAS  Google Scholar 

  14. Kiel, M.J. et al. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121, 1109–1121 (2005).

    Article  CAS  Google Scholar 

  15. Foudi, A. et al. Analysis of histone 2B-GFP retention reveals slowly cycling hematopoietic stem cells. Nat. Biotechnol. 27, 84–90 (2009).

    Article  CAS  Google Scholar 

  16. Gan, B.K., Kondyurin, A. & Bilek, M.M. Comparison of protein surface attachment on untreated and plasma immersion ion implantation treated polystyrene: protein islands and carpet. Langmuir 23, 2741–2746 (2007).

    Article  CAS  Google Scholar 

  17. Clark, K., Langeslag, M., Figdor, C.G. & van Leeuwen, F.N. Myosin II and mechanotransduction: a balancing act. Trends Cell Biol. 17, 178–186 (2007).

    Article  CAS  Google Scholar 

  18. Passegué, E., Wagers, A.J., Giuriato, S., Anderson, W.C. & Weissman, I.L. Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J. Exp. Med. 202, 1599–1611 (2005).

    Article  Google Scholar 

  19. Kiel, M.J. & Morrison, S.J. Uncertainty in the niches that maintain haematopoietic stem cells. Nat. Rev. Immunol. 8, 290–301 (2008).

    Article  CAS  Google Scholar 

  20. Wang, N., Tytell, J.D. & Ingber, D.E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009).

    Article  CAS  Google Scholar 

  21. Discher, D.E., Mooney, D.J. & Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    Article  CAS  Google Scholar 

  22. Even-Ram, S., Artym, V. & Yamada, K.M. Matrix control of stem cell fate. Cell 126, 645–647 (2006).

    Article  CAS  Google Scholar 

  23. Bax, D.V., Rodgers, U.R., Bilek, M.M. & Weiss, A.S. Cell adhesion to tropoelastin is mediated via the C-terminal GRKRK motif and integrin alphaVbeta3. J. Biol. Chem. 284, 28616–28623 (2009).

    Article  CAS  Google Scholar 

  24. Broekelmann, T.J. et al. Tropoelastin interacts with cell-surface glycosaminoglycans via its COOH-terminal domain. J. Biol. Chem. 280, 40939–40947 (2005).

    Article  CAS  Google Scholar 

  25. Mecham, R.P. et al. Elastin binds to a multifunctional 67-kilodalton peripheral membrane protein. Biochemistry 28, 3716–3722 (1989).

    Article  CAS  Google Scholar 

  26. Rodgers, U.R. & Weiss, A.S. Cellular interactions with elastin. Pathol. Biol. (Paris) 53, 390–398 (2005).

    Article  CAS  Google Scholar 

  27. Spofford, C.M. & Chilian, W.M. The elastin-laminin receptor functions as a mechanotransducer in vascular smooth muscle. Am. J. Physiol. Heart Circ. Physiol. 280, H1354–H1360 (2001).

    Article  CAS  Google Scholar 

  28. Spofford, C.M. & Chilian, W.M. Mechanotransduction via the elastin-laminin receptor (ELR) in resistance arteries. J. Biomech. 36, 645–652 (2003).

    Article  Google Scholar 

  29. Galbraith, C.G., Yamada, K.M. & Galbraith, J.A. Polymerizing actin fibers position integrins primed to probe for adhesion sites. Science 315, 992–995 (2007).

    Article  CAS  Google Scholar 

  30. Schwaiger, I., Sattler, C., Hostetter, D.R. & Rief, M. The myosin coiled-coil is a truly elastic protein structure. Nat. Mater. 1, 232–235 (2002).

    Article  CAS  Google Scholar 

  31. Puttini, S. et al. Gene-mediated restoration of normal myofiber elasticity in dystrophic muscles. Mol. Ther. 17, 19–25 (2009).

    Article  CAS  Google Scholar 

  32. Ji, L., Lim, J. & Danuser, G. Fluctuations of intracellular forces during cell protrusion. Nat. Cell Biol. 10, 1393–1400 (2008).

    Article  CAS  Google Scholar 

  33. Lutolf, M.P., Gilbert, P.M. & Blau, H.M. Designing materials to direct stem-cell fate. Nature 462, 433–441 (2009).

    Article  CAS  Google Scholar 

  34. Zovein, A.C. et al. Fate tracing reveals the endothelial origin of hematopoietic stem cells. Cell Stem Cell 3, 625–636 (2008).

    Article  CAS  Google Scholar 

  35. Chen, M.J., Yokomizo, T., Zeigler, B.M., Dzierzak, E. & Speck, N.A. Runx1 is required for the endothelial to haematopoietic cell transition but not thereafter. Nature 457, 887–891 (2009).

    Article  CAS  Google Scholar 

  36. Bertrand, J.Y. et al. Haematopoietic stem cells derive directly from aortic endothelium during development. Nature 464, 108–111 (2010).

    Article  CAS  Google Scholar 

  37. Boisset, J.C. et al. In vivo imaging of haematopoietic cells emerging from the mouse aortic endothelium. Nature 464, 116–120 (2010).

    Article  CAS  Google Scholar 

  38. Kissa, K. & Herbomel, P. Blood stem cells emerge from aortic endothelium by a novel type of cell transition. Nature 464, 112–115 (2010).

    Article  CAS  Google Scholar 

  39. Mithieux, S.M., Rasko, J.E. & Weiss, A.S. Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials 25, 4921–4927 (2004).

    Article  CAS  Google Scholar 

  40. Mitragotri, S. & Lahann, J. Physical approaches to biomaterial design. Nat. Mater. 8, 15–23 (2009).

    Article  CAS  Google Scholar 

  41. Martin, S.L., Vrhovski, B. & Weiss, A.S. Total synthesis and expression in Escherichia coli of a gene encoding human tropoelastin. Gene 154, 159–166 (1995).

    Article  CAS  Google Scholar 

  42. Wu, W.J., Vrhovski, B. & Weiss, A.S. Glycosaminoglycans mediate the coacervation of human tropoelastin through dominant charge interactions involving lysine side chains. J. Biol. Chem. 274, 21719–21724 (1999).

    Article  CAS  Google Scholar 

  43. Debelle, L. & Tamburro, A.M. Elastin: molecular description and function. Int. J. Biochem. Cell Biol. 31, 261–272 (1999).

    Article  CAS  Google Scholar 

  44. Ostuni, A., Lograno, M.D., Gasbarro, A.R., Bisaccia, F. & Tamburro, A.M. Novel properties of peptides derived from the sequence coded by exon 26A of human elastin. Int. J. Biochem. Cell Biol. 34, 130–135 (2002).

    Article  CAS  Google Scholar 

  45. Wu, W.J. & Weiss, A.S. Deficient coacervation of two forms of human tropoelastin associated with supravalvular aortic stenosis. Eur. J. Biochem. 266, 308–314 (1999).

    Article  CAS  Google Scholar 

  46. Rodgers, U.R. & Weiss, A.S. Integrin alpha v beta 3 binds a unique non-RGD site near the C-terminus of human tropoelastin. Biochimie 86, 173–178 (2004).

    Article  CAS  Google Scholar 

  47. Toonkool, P., Jensen, S.A., Maxwell, A.L. & Weiss, A.S. Hydrophobic domains of human tropoelastin interact in a context-dependent manner. J. Biol. Chem. 276, 44575–44580 (2001).

    Article  CAS  Google Scholar 

  48. Hu, Y. & Smyth, G.K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009).

    Article  CAS  Google Scholar 

  49. Miller, E., Garcia, T., Hultgren, S. & Oberhauser, A.F. The mechanical properties of E. coli type 1 pili measured by atomic force microscopy techniques. Biophys. J. 91, 3848–3856 (2006).

    Article  CAS  Google Scholar 

  50. Greene, D.N. et al. Single-molecule force spectroscopy reveals a stepwise unfolding of Caenorhabditis elegans giant protein kinase domains. Biophys. J. 95, 1360–1370 (2008).

    Article  CAS  Google Scholar 

  51. Florin, E.L. et al. Sensing specific molecular interactions with the atomic force microscope. Biosens. Bioelectron. 10, 895–901 (1995).

    Article  CAS  Google Scholar 

  52. Lord, M.S. et al. Monitoring cell adhesion on tantalum and oxidised polystyrene using a quartz crystal microbalance with dissipation. Biomaterials 27, 4529–4537 (2006).

    Article  CAS  Google Scholar 

  53. Mecham, R.P. & Heuser, J.E. The elastic fiber. in Cell Biology of Extracellular Matrix (ed. Hay, E.D.) 79–110 (Plenum Press, New York, 1991).

    Chapter  Google Scholar 

  54. Yin, Y. et al. Covalent immobilisation of tropoelastin on a plasma deposited interface for enhancement of endothelialisation on metal surfaces. Biomaterials 30, 1675–1681 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Vignali for scientific discussion. J.H. received grant support from the Cancer Institute of New South Wales, A.S.W. from the Australian Research Council and National Health and Medical Research Council, A.F.O. received support from the US National Institutes of Health and J.E.J.R. from the National Health and Medical Research Council and the Cell and Gene Trust, Cure The Future.

Author information

Authors and Affiliations

Authors

Contributions

J.H. and J.E.J.R. designed the experiments and wrote the paper, J.H. and M.S.L. analyzed the data, J.H., S.W., A.F.O., L.M., S.S.E., M.S.L. and A.K. generated the data, A.S.W. and J.E.J.R. provided conceptual input and D.V.B., L.B.N.-S. and S.S.E. provided tropoelastin reagents.

Corresponding author

Correspondence to John E J Rasko.

Ethics declarations

Competing interests

A.S.W. receives personal financial support from Elastagen Pty Ltd. A patent application has been filed for some of the technology disclosed in this publication.

Supplementary information

Supplementary Text and Figures

Supplementary Figs. 1–10 (PDF 1071 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holst, J., Watson, S., Lord, M. et al. Substrate elasticity provides mechanical signals for the expansion of hemopoietic stem and progenitor cells. Nat Biotechnol 28, 1123–1128 (2010). https://doi.org/10.1038/nbt.1687

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt.1687

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research