Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Next-generation synthetic gene networks

Abstract

Synthetic biology is focused on the rational construction of biological systems based on engineering principles. During the field's first decade of development, significant progress has been made in designing biological parts and assembling them into genetic circuits to achieve basic functionalities. These circuits have been used to construct proof-of-principle systems with promising results in industrial and medical applications. However, advances in synthetic biology have been limited by a lack of interoperable parts, techniques for dynamically probing biological systems and frameworks for the reliable construction and operation of complex, higher-order networks. As these challenges are addressed, synthetic biologists will be able to construct useful next-generation synthetic gene networks with real-world applications in medicine, biotechnology, bioremediation and bioenergy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Tunable genetic filter.
Figure 2: Genetic signal converters.
Figure 3: Adaptive learning networks.
Figure 4: Amyloid-based memory.
Figure 5: Cell-cycle counter for biological containment.
Figure 6: Autonomous chemotaxis.

References

  1. 1

    Gardner, T.S., Cantor, C.R. & Collins, J.J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Elowitz, M.B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3

    Kramer, B.P. et al. An engineered epigenetic transgene switch in mammalian cells. Nat. Biotechnol. 22, 867–870 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4

    Isaacs, F.J., Hasty, J., Cantor, C.R. & Collins, J.J. Prediction and measurement of an autoregulatory genetic module. Proc. Natl. Acad. Sci. USA 100, 7714–7719 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  5. 5

    Ham, T.S., Lee, S.K., Keasling, J.D. & Arkin, A.P. A tightly regulated inducible expression system utilizing the fim inversion recombination switch. Biotechnol. Bioeng. 94, 1–4 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6

    Ham, T.S., Lee, S.K., Keasling, J.D. & Arkin, A.P. Design and construction of a double inversion recombination switch for heritable sequential genetic memory. PLoS ONE 3, e2815 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7

    Deans, T.L., Cantor, C.R. & Collins, J.J. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell 130, 363–372 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8

    Ajo-Franklin, C.M. et al. Rational design of memory in eukaryotic cells. Genes Dev. 21, 2271–2276 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. 9

    Friedland, A.E. et al. Synthetic gene networks that count. Science 324, 1199–1202 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. 10

    Fung, E. et al. A synthetic gene-metabolic oscillator. Nature 435, 118–122 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Stricker, J. et al. A fast, robust and tunable synthetic gene oscillator. Nature 456, 516–519 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12

    Tigges, M., Marquez-Lago, T.T., Stelling, J. & Fussenegger, M. A tunable synthetic mammalian oscillator. Nature 457, 309–312 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Rinaudo, K. et al. A universal RNAi-based logic evaluator that operates in mammalian cells. Nat. Biotechnol. 25, 795–801 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Win, M.N. & Smolke, C.D. Higher-order cellular information processing with synthetic RNA devices. Science 322, 456–460 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15

    Basu, S., Gerchman, Y., Collins, C.H., Arnold, F.H. & Weiss, R. A synthetic multicellular system for programmed pattern formation. Nature 434, 1130–1134 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16

    Hooshangi, S., Thiberge, S. & Weiss, R. Ultrasensitivity and noise propagation in a synthetic transcriptional cascade. Proc. Natl. Acad. Sci. USA 102, 3581–3586 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17

    Sohka, T. et al. An externally tunable bacterial band-pass filter. Proc. Natl. Acad. Sci. USA 106, 10135–10140 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18

    Bayer, T.S. & Smolke, C.D. Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat. Biotechnol. 23, 337–343 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19

    Kobayashi, H. et al. Programmable cells: interfacing natural and engineered gene networks. Proc. Natl. Acad. Sci. USA 101, 8414–8419 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20

    Win, M.N. & Smolke, C.D. A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc. Natl. Acad. Sci. USA 104, 14283–14288 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21

    You, L., Cox, R.S. III, Weiss, R. & Arnold, F.H. Programmed population control by cell-cell communication and regulated killing. Nature 428, 868–871 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22

    Ellis, T., Wang, X. & Collins, J.J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nat. Biotechnol. 27, 465–471 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23

    Levskaya, A. et al. Synthetic biology: engineering Escherichia coli to see light. Nature 438, 441–442 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Levskaya, A., Weiner, O.D., Lim, W.A. & Voigt, C.A. Spatiotemporal control of cell signalling using a light-switchable protein interaction. Nature 461, 997–1001 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Tabor, J.J. et al. A synthetic genetic edge detection program. Cell 137, 1272–1281 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26

    Anderson, J.C., Clarke, E.J., Arkin, A.P. & Voigt, C.A. Environmentally controlled invasion of cancer cells by engineered bacteria. J. Mol. Biol. 355, 619–627 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27

    Lu, T.K. & Collins, J.J. Dispersing biofilms with engineered enzymatic bacteriophage. Proc. Natl. Acad. Sci. USA 104, 11197–11202 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28

    Lu, T.K. & Collins, J.J. Engineered bacteriophage targeting gene networks as adjuvants for antibiotic therapy. Proc. Natl. Acad. Sci. USA 106, 4629–4634 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29

    Ro, D.K. et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature 440, 940–943 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30

    Czar, M.J., Cai, Y. & Peccoud, J. Writing DNA with GenoCAD. Nucleic Acids Res. 37, W40–W47 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Guido, N.J. et al. A bottom-up approach to gene regulation. Nature 439, 856–860 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32

    Shetty, R.P., Endy, D. & Knight, T.F. Jr. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2, 5 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33

    Carr, P.A. & Church, G.M. Genome engineering. Nat. Biotechnol. 27, 1151–1162 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. 34

    Wang, H.H. et al. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460, 894–898 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35

    Purnick, P.E. & Weiss, R. The second wave of synthetic biology: from modules to systems. Nat. Rev. Mol. Cell Biol. 10, 410–422 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36

    Lucks, J.B., Qi, L., Whitaker, W.R. & Arkin, A.P. Toward scalable parts families for predictable design of biological circuits. Curr. Opin. Microbiol. 11, 567–573 (2008).

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37

    Maeder, M.L. et al. Rapid “open-source” engineering of customized zinc-finger nucleases for highly efficient gene modification. Mol. Cell 31, 294–301 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. 38

    Beerli, R.R., Dreier, B. & Barbas, C.F. III. Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 97, 1495–1500 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39

    Park, K.S. et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat. Biotechnol. 21, 1208–1214 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. 40

    Isaacs, F.J. et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nat. Biotechnol. 22, 841–847 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    Win, M.N., Liang, J.C. & Smolke, C.D. Frameworks for programming biological function through RNA parts and devices. Chem. Biol. 16, 298–310 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. 42

    Buchholz, F., Angrand, P.O. & Stewart, A.F. Improved properties of FLP recombinase evolved by cycling mutagenesis. Nat. Biotechnol. 16, 657–662 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43

    Kilby, N.J., Snaith, M.R. & Murray, J.A. Site-specific recombinases: tools for genome engineering. Trends Genet. 9, 413–421 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44

    Santoro, S.W. & Schultz, P.G. Directed evolution of the site specificity of Cre recombinase. Proc. Natl. Acad. Sci. USA 99, 4185–4190 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45

    Groth, A.C. & Calos, M.P. Phage integrases: biology and applications. J. Mol. Biol. 335, 667–678 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46

    Kaplan, S., Bren, A., Dekel, E. & Alon, U. The incoherent feed-forward loop can generate non-monotonic input functions for genes. Mol. Syst. Biol. 4, 203 (2008).

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47

    Alper, H., Fischer, C., Nevoigt, E. & Stephanopoulos, G. Tuning genetic control through promoter engineering. Proc. Natl. Acad. Sci. USA 102, 12678–12683 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48

    Cox, R.S. III, Surette, M.G. & Elowitz, M.B. Programming gene expression with combinatorial promoters. Mol. Syst. Biol. 3, 145 (2007).

    PubMed  PubMed Central  Google Scholar 

  49. 49

    Hammer, K., Mijakovic, I. & Jensen, P.R. Synthetic promoter libraries–tuning of gene expression. Trends Biotechnol. 24, 53–55 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50

    Jensen, P.R. & Hammer, K. Artificial promoters for metabolic optimization. Biotechnol. Bioeng. 58, 191–195 (1998).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  51. 51

    Murphy, K.F., Balazsi, G. & Collins, J.J. Combinatorial promoter design for engineering noisy gene expression. Proc. Natl. Acad. Sci. USA 104, 12726–12731 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  52. 52

    Salis, H.M., Mirsky, E.A. & Voigt, C.A. Automated design of synthetic ribosome binding sites to control protein expression. Nat. Biotechnol. 27, 946–950 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53

    Andersen, J.B. et al. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–2246 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. 54

    Nevozhay, D., Adams, R.M., Murphy, K.F., Josic, K. & Balazsi, G. Negative autoregulation linearizes the dose-response and suppresses the heterogeneity of gene expression. Proc. Natl. Acad. Sci. USA 106, 5123–5128 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55

    Chandran, D., Bergmann, F.T. & Sauro, H.M. TinkerCell: modular CAD tool for synthetic biology. J Biol Eng 3, 19 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  56. 56

    Kaznessis, Y.N. Computational methods in synthetic biology. Biotechnol. J. 4, 1392–1405 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57

    Hasty, J., McMillen, D., Isaacs, F. & Collins, J.J. Computational studies of gene regulatory networks: in numero molecular biology. Nat. Rev. Genet. 2, 268–279 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58

    Khalil, A.S. et al. Single M13 bacteriophage tethering and stretching. Proc. Natl. Acad. Sci. USA 104, 4892–4897 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59

    Svoboda, K. & Block, S.M. Biological applications of optical forces. Annu. Rev. Biophys. Biomol. Struct. 23, 247–285 (1994).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60

    Bustamante, C., Bryant, Z. & Smith, S.B. Ten years of tension: single-molecule DNA mechanics. Nature 421, 423–427 (2003).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  61. 61

    Khalil, A.S. et al. Kinesin's cover-neck bundle folds forward to generate force. Proc. Natl. Acad. Sci. USA 105, 19247–19252 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62

    Neuman, K.C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  63. 63

    Lee, S.K. et al. Directed evolution of AraC for improved compatibility of arabinose- and lactose-inducible promoters. Appl. Environ. Microbiol. 73, 5711–5715 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. 64

    Gulati, S. et al. Opportunities for microfluidic technologies in synthetic biology. J. R. Soc. Interface 6 Suppl 4, S493–S506 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Bennett, M.R. & Hasty, J. Microfluidic devices for measuring gene network dynamics in single cells. Nat. Rev. Genet. 10, 628–638 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. 66

    Simpson, M.L., Cox, C.D. & Sayler, G.S. Frequency domain analysis of noise in autoregulated gene circuits. Proc. Natl. Acad. Sci. USA 100, 4551–4556 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  67. 67

    Mettetal, J.T., Muzzey, D., Gomez-Uribe, C. & van Oudenaarden, A. The frequency dependence of osmo-adaptation in Saccharomyces cerevisiae. Science 319, 482–484 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  68. 68

    Bennett, M.R. et al. Metabolic gene regulation in a dynamically changing environment. Nature 454, 1119–1122 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69

    Malmstrom, J. et al. Proteome-wide cellular protein concentrations of the human pathogen Leptospira interrogans. Nature 460, 762–765 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70

    Summerer, D. et al. A genetically encoded fluorescent amino acid. Proc. Natl. Acad. Sci. USA 103, 9785–9789 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. 71

    Wang, J., Xie, J. & Schultz, P.G. A genetically encoded fluorescent amino acid. J. Am. Chem. Soc. 128, 8738–8739 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. 72

    Michalet, X. et al. Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307, 538–544 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  73. 73

    Hamad-Schifferli, K., Schwartz, J.J., Santos, A.T., Zhang, S. & Jacobson, J.M. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 415, 152–155 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  74. 74

    Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  75. 75

    Misra, N. et al. Bioelectronic silicon nanowire devices using functional membrane proteins. Proc. Natl. Acad. Sci. USA 106, 13780–13784 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  76. 76

    Weber, W. & Fussenegger, M. Engineering of synthetic mammalian gene networks. Chem. Biol. 16, 287–297 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  77. 77

    Gibson, D.G. et al. Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319, 1215–1220 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78

    Glass, J.I. et al. Essential genes of a minimal bacterium. Proc. Natl. Acad. Sci. USA 103, 425–430 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79

    Lartigue, C. et al. Genome transplantation in bacteria: changing one species to another. Science 317, 632–638 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. 80

    Lartigue, C. et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325, 1693–1696 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81

    Carrera, J., Rodrigo, G. & Jaramillo, A. Towards the automated engineering of a synthetic genome. Mol. Biosyst. 5, 733–743 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82

    Rackham, O. & Chin, J.W. A network of orthogonal ribosome x mRNA pairs. Nat. Chem. Biol. 1, 159–166 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. 83

    Wang, K., Neumann, H., Peak-Chew, S.Y. & Chin, J.W. Evolved orthogonal ribosomes enhance the efficiency of synthetic genetic code expansion. Nat. Biotechnol. 25, 770–777 (2007).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  84. 84

    An, W. & Chin, J.W. Synthesis of orthogonal transcription-translation networks. Proc. Natl. Acad. Sci. USA 106, 8477–8482 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  85. 85

    Wang, Q., Parrish, A.R. & Wang, L. Expanding the genetic code for biological studies. Chem. Biol. 16, 323–336 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. 86

    Drinnenberg, I.A. et al. RNAi in Budding Yeast. Science 326, 544–550 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87

    Yoon, Y.G. & Koob, M.D. Efficient cloning and engineering of entire mitochondrial genomes in Escherichia coli and transfer into transcriptionally active mitochondria. Nucleic Acids Res. 31, 1407–1415 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. 88

    Austin, D.W. et al. Gene network shaping of inherent noise spectra. Nature 439, 608–611 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89

    Mar, D.J., Chow, C.C., Gerstner, W., Adams, R.W. & Collins, J.J. Noise shaping in populations of coupled model neurons. Proc. Natl. Acad. Sci. USA 96, 10450–10455 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  90. 90

    McGinness, K.E., Baker, T.A. & Sauer, R.T. Engineering controllable protein degradation. Mol. Cell 22, 701–707 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91

    Banaszynski, L.A., Chen, L.C., Maynard-Smith, L.A., Ooi, A.G. & Wandless, T.J. A rapid, reversible, and tunable method to regulate protein function in living cells using synthetic small molecules. Cell 126, 995–1004 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. 92

    Takahashi, K. et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131, 861–872 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  93. 93

    Macarthur, B.D., Ma'ayan, A. & Lemischka, I.R. Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol. 10, 672–681 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. 94

    Lu, T., Ferry, M., Weiss, R. & Hasty, J. A molecular noise generator. Phys. Biol. 5, 036006 (2008).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  95. 95

    Blake, W.J. et al. Phenotypic consequences of promoter-mediated transcriptional noise. Mol. Cell 24, 853–865 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  96. 96

    Discher, D.E., Mooney, D.J. & Zandstra, P.W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. 97

    Fernando, C.T. et al. Molecular circuits for associative learning in single-celled organisms. J. R. Soc. Interface 6, 463–469 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. 98

    Fritz, G., Buchler, N.E., Hwa, T. & Gerland, U. Designing sequential transcription logic: a simple genetic circuit for conditional memory. Syst. Synth. Biol. 1, 89–98 (2007).

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99

    Tagkopoulos, I., Liu, Y.C. & Tavazoie, S. Predictive behavior within microbial genetic networks. Science 320, 1313–1317 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. 100

    Mitchell, A. et al. Adaptive prediction of environmental changes by microorganisms. Nature 460, 220–224 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  101. 101

    Lee, D.K., Itti, L., Koch, C. & Braun, J. Attention activates winner-take-all competition among visual filters. Nat. Neurosci. 2, 375–381 (1999).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  102. 102

    Brakmann, S. & Grzeszik, S. An error-prone T7 RNA polymerase mutant generated by directed evolution. ChemBioChem 2, 212–219 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  103. 103

    Yeh, B.J., Rutigliano, R.J., Deb, A., Bar-Sagi, D. & Lim, W.A. Rewiring cellular morphology pathways with synthetic guanine nucleotide exchange factors. Nature 447, 596–600 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  104. 104

    Dueber, J.E., Mirsky, E.A. & Lim, W.A. Engineering synthetic signaling proteins with ultrasensitive input/output control. Nat. Biotechnol. 25, 660–662 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  105. 105

    Bashor, C.J., Helman, N.C., Yan, S. & Lim, W.A. Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science 319, 1539–1543 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106

    Goldberg, S.D., Derr, P., DeGrado, W.F. & Goulian, M. Engineered single- and multi-cell chemotaxis pathways in E. coli. Mol. Syst. Biol. 5, 283 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  107. 107

    Li, L. & Lindquist, S. Creating a protein-based element of inheritance. Science 287, 661–664 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108

    Alberti, S., Halfmann, R., King, O., Kapila, A. & Lindquist, S. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137, 146–158 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. 109

    Bhalla, U.S., Ram, P.T. & Iyengar, R. MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297, 1018–1023 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  110. 110

    Tsai, T.Y. et al. Robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321, 126–129 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. 111

    Stavreva, D.A. et al. Ultradian hormone stimulation induces glucocorticoid receptor-mediated pulses of gene transcription. Nat. Cell Biol. 11, 1093–1102 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  112. 112

    McMillen, D., Kopell, N., Hasty, J. & Collins, J.J. Synchronizing genetic relaxation oscillators by intercell signaling. Proc. Natl. Acad. Sci. USA 99, 679–684 (2002).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  113. 113

    Garcia-Ojalvo, J., Elowitz, M.B. & Strogatz, S.H. Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. USA 101, 10955–10960 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  114. 114

    Sarpeshkar, R. & O'Halloran, M. Scalable hybrid computation with spikes. Neural Comput. 14, 2003–2038 (2002).

    PubMed  Article  PubMed Central  Google Scholar 

  115. 115

    Molin, S. et al. Suicidal genetic elements and their use in biological containment of bacteria. Annu. Rev. Microbiol. 47, 139–166 (1993).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  116. 116

    Looger, L.L., Dwyer, M.A., Smith, J.J. & Hellinga, H.W. Computational design of receptor and sensor proteins with novel functions. Nature 423, 185–190 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  117. 117

    Win, M.N., Klein, J.S. & Smolke, C.D. Codeine-binding RNA aptamers and rapid determination of their binding constants using a direct coupling surface plasmon resonance assay. Nucleic Acids Res. 34, 5670–5682 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118

    Skerker, J.M. et al. Rewiring the specificity of two-component signal transduction systems. Cell 133, 1043–1054 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119

    Xu, J. & Lavan, D.A. Designing artificial cells to harness the biological ion concentration gradient. Nat. Nanotechnol. 3, 666–670 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  120. 120

    Jogler, C. & Schuler, D. Genomics, genetics, and cell biology of magnetosome formation. Annu. Rev. Microbiol. 63, 501–521 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  121. 121

    Booth, I.R., Edwards, M.D., Black, S., Schumann, U. & Miller, S. Mechanosensitive channels in bacteria: signs of closure? Nat. Rev. Microbiol. 5, 431–440 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  122. 122

    Falke, J.J., Bass, R.B., Butler, S.L., Chervitz, S.A. & Danielson, M.A. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes. Annu. Rev. Cell Dev. Biol. 13, 457–512 (1997).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  123. 123

    Gao, Z., Tseng, C.H., Strober, B.E., Pei, Z. & Blaser, M.J. Substantial alterations of the cutaneous bacterial biota in psoriatic lesions. PLoS ONE 3, e2719 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  124. 124

    Grice, E.A. et al. Topographical and temporal diversity of the human skin microbiome. Science 324, 1190–1192 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  125. 125

    Ley, R.E., Lozupone, C.A., Hamady, M., Knight, R. & Gordon, J.I. Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6, 776–788 (2008).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. 126

    Turnbaugh, P.J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  127. 127

    Turnbaugh, P.J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    PubMed  Article  PubMed Central  Google Scholar 

  128. 128

    Steidler, L. et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 289, 1352–1355 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129

    Braat, H. et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn's disease. Clin. Gastroenterol. Hepatol. 4, 754–759 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  130. 130

    Wei, M.Q., Mengesha, A., Good, D. & Anne, J. Bacterial targeted tumour therapy-dawn of a new era. Cancer Lett. 259, 16–27 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  131. 131

    von Maltzahn, G. et al. Nanoparticle self-assembly gated by logical proteolytic triggers. J. Am. Chem. Soc. 129, 6064–6065 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  132. 132

    Stephanopoulos, G. Challenges in engineering microbes for biofuels production. Science 315, 801–804 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  133. 133

    Teule, F. et al. A protocol for the production of recombinant spider silk-like proteins for artificial fiber spinning. Nat. Protoc. 4, 341–355 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134

    Slotta, U. et al. Spider silk and amyloid fibrils: a structural comparison. Macromol. Biosci. 7, 183–188 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  135. 135

    Rammensee, S., Slotta, U., Scheibel, T. & Bausch, A.R. Assembly mechanism of recombinant spider silk proteins. Proc. Natl. Acad. Sci. USA 105, 6590–6595 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  136. 136

    Widmaier, D.M. et al. Engineering the Salmonella type III secretion system to export spider silk monomers. Mol. Syst. Biol. 5, 309 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  137. 137

    Choi, J.H. & Lee, S.Y. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl. Microbiol. Biotechnol. 64, 625–635 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138

    Klein-Marcuschamer, D. & Stephanopoulos, G. Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc. Natl. Acad. Sci. USA 105, 2319–2324 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139

    Dueber, J.E. et al. Synthetic protein scaffolds provide modular control over metabolic flux. Nat. Biotechnol. 27, 753–759 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

We would like to thank the Howard Hughes Medical Institute and the National Institutes of Health Director's Pioneer Award Program for their financial support. We also thank the reviewers for their insights and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Timothy K Lu.

Ethics declarations

Competing interests

T.K.L. and J.J.C. have filed technology disclosures with their respective institutions for intellectual property protection covering several of the next-generation gene networks.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lu, T., Khalil, A. & Collins, J. Next-generation synthetic gene networks. Nat Biotechnol 27, 1139–1150 (2009). https://doi.org/10.1038/nbt.1591

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing