Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-wide identification of post-translational modulators of transcription factor activity in human B cells


The ability of a transcription factor (TF) to regulate its targets is modulated by a variety of genetic and epigenetic mechanisms, resulting in highly context-dependent regulatory networks. However, high-throughput methods for the identification of proteins that affect TF activity are still largely unavailable. Here we introduce an algorithm, modulator inference by network dynamics (MINDy), for the genome-wide identification of post-translational modulators of TF activity within a specific cellular context. When used to dissect the regulation of MYC activity in human B lymphocytes, the approach inferred novel modulators of MYC function, which act by distinct mechanisms, including protein turnover, transcription complex formation and selective enzyme recruitment. MINDy is generally applicable to study the post-translational modulation of mammalian TFs in any cellular context. As such it can be used to dissect context-specific signaling pathways and combinatorial transcriptional regulation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: MINDy algorithm.
Figure 2: STK38 regulates the stability of MYC protein.
Figure 3: BHLHB2 antagonizes MYC activity in B cells.
Figure 4: MEF2B enhances MYC activity via protein-protein interaction.
Figure 5: MYC selectively recruits HDAC1 to its targets as co-repressor.

Accession codes




  1. 1

    Faith, J.J. et al. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biol. 5, e8 (2007).

  2. 2

    Friedman, N. Inferring cellular networks using probabilistic graphical models. Science 303, 799–805 (2004).

    CAS  Article  Google Scholar 

  3. 3

    Gardner, T.S., di Bernardo, D., Lorenz, D. & Collins, J.J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102–105 (2003).

    CAS  Article  Google Scholar 

  4. 4

    Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37, 382–390 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Elkon, R., Linhart, C., Sharan, R., Shamir, R. & Shiloh, Y. Genome-wide in silico identification of transcriptional regulators controlling the cell cycle in human cells. Genome Res. 13, 773–780 (2003).

    CAS  Article  Google Scholar 

  6. 6

    Stuart, J.M., Segal, E., Koller, D. & Kim, S.K.A. Gene-coexpression network for global discovery of conserved genetic modules. Science 302, 249–255 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Zeitlinger, J. et al. Program-specific distribution of a transcription factor dependent on partner transcription factor and MAPK signaling. Cell 113, 395–404 (2003).

    CAS  Article  Google Scholar 

  8. 8

    Luscombe, N.M. et al. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 431, 308–312 (2004).

    CAS  Article  Google Scholar 

  9. 9

    Segal, E. et al. Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat. Genet. 34, 166–176 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    CAS  Article  Google Scholar 

  11. 11

    Linding, R. et al. Systematic discovery of in vivo phosphorylation networks. Cell 129, 1415–1426 (2007).

    CAS  Article  Google Scholar 

  12. 12

    Cover, T.M. & Thomas, J. Elements of Information Theory edn. 2 (Wiley Interscience, Hoboken, New Jersey, USA, 2006).

    Google Scholar 

  13. 13

    Basso, K. et al. Reverse engineering of regulatory networks in human B cells. Nat. Genet. 37, 382–390 (2005).

    CAS  Article  Google Scholar 

  14. 14

    Mani, K.M. et al. A systems biology approach to prediction of oncogenes and molecular perturbation targets in B-cell lymphomas. Mol. Syst. Biol. 4, 169 (2008).

    Article  Google Scholar 

  15. 15

    Dang, C.V. et al. The c-Myc target gene network. Semin. Cancer Biol. 16, 253–264 (2006).

    CAS  Article  Google Scholar 

  16. 16

    Dominguez-Sola, D. et al. Non-transcriptional control of DNA replication by c-Myc. Nature 448, 445–451 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Pelengaris, S., Khan, M. & Evan, G. c-MYC: more than just a matter of life and death. Nat. Rev. Cancer 2, 764–776 (2002).

    CAS  Article  Google Scholar 

  18. 18

    Zeller, K.I., Jegga, A.G., Aronow, B.J., O'Donnell, K.A. & Dang, C.V. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol. 4, R69 (2003).

  19. 19

    Zeller, K.I., Jegga, A., Aronow, B., O'Donnell, K. & Dang, C. An integrated database of genes responsive to the Myc oncogenic transcription factor: identification of direct genomic targets. Genome Biol. 4, R69 (2003).

  20. 20

    Levens, D.L. Reconstructing MYC. Genes Dev. 17, 1071–1077 (2003).

    CAS  Article  Google Scholar 

  21. 21

    Patel, J.H. et al. The c-MYC oncoprotein is a substrate of the acetyltransferases hGCN5/PCAF and TIP60. Mol. Cell. Biol. 24, 10826–10834 (2004).

    CAS  Article  Google Scholar 

  22. 22

    Sears, R. et al. Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev. 14, 2501–2514 (2000).

    CAS  Article  Google Scholar 

  23. 23

    Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).

    CAS  Article  Google Scholar 

  24. 24

    Matys, V. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res. 31, 374–378 (2003).

    CAS  Article  Google Scholar 

  25. 25

    Tamaskovic, R., Bichsel, S.J. & Hemmings, B.A. NDR family of AGC kinases–essential regulators of the cell cycle and morphogenesis. FEBS Lett. 546, 73–80 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Patel, J.H. & McMahon, S.B. BCL2 is a downstream effector of MIZ-1 essential for blocking c-MYC-induced apoptosis. J. Biol. Chem. 282, 5–13 (2007).

    CAS  Article  Google Scholar 

  27. 27

    Schuhmacher, M. et al. The transcriptional program of a human B cell line in response to Myc. Nucleic Acids Res. 29, 397–406 (2001).

    CAS  Article  Google Scholar 

  28. 28

    Wu, K.J. et al. Direct activation of TERT transcription by c-MYC. Nat. Genet. 21, 220–224 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Seoane, J., Le, H.V. & Massague, J. Myc suppression of the p21Cip1 Cdk inhibitor influences the outcome of the p53 response to DNA damage. Nature 419, 729–734 (2002).

    CAS  Article  Google Scholar 

  30. 30

    St-Pierre, B., Flock, G., Zacksenhaus, E. & Egan, S.E. Stra13 homodimers repress transcription through class B E-box elements. J. Biol. Chem. 277, 46544–46551 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Wanzel, M., Herold, S. & Eilers, M. Transcriptional repression by Myc. Trends Cell Biol. 13, 146–150 (2003).

    CAS  Article  Google Scholar 

  32. 32

    Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    CAS  Article  Google Scholar 

  33. 33

    Molkentin, J.D. et al. MEF2B is a potent transactivator expressed in early myogenic lineages. Mol. Cell. Biol. 16, 3814–3824 (1996).

    CAS  Article  Google Scholar 

  34. 34

    Wade, P.A. Transcriptional control at regulatory checkpoints by histone deacetylases: molecular connections between cancer and chromatin. Hum. Mol. Genet. 10, 693–698 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Satou, A., Taira, T., Iguchi-Ariga, S.M.M. & Ariga, H. A novel transrepression pathway of c-Myc. Recruitment of a transcriptional corepressor complex to c-Myc by MM-1, a c-Myc-binding protein. J. Biol. Chem. 276, 46562–46567 (2001).

    CAS  Article  Google Scholar 

  36. 36

    Matsuoka, Y., Fukamachi, K., Uehara, N., Tsuda, H. & Tsubura, A. Induction of a novel histone deacetylase 1/c-Myc/Mnt/Max complex formation is implicated in parity-induced refractoriness to mammary carcinogenesis. Cancer Sci. 99, 309–315 (2008).

    CAS  Article  Google Scholar 

  37. 37

    Margolin, A.A. et al. ChIP-on-chip significance analysis reveals large-scale binding and regulation by human transcription factor oncogenes. Proc. Natl. Acad. Sci. USA 106, 244–249 (2009).

    CAS  Article  Google Scholar 

  38. 38

    Robertson, G. et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat. Methods 4, 651–657 (2007).

    CAS  Article  Google Scholar 

  39. 39

    Steffen, M., Petti, A. & Aach, J., D'haeseleer, P. & Church, G. Automated modelling of signal transduction networks. BMC Bioinformatics 3, 34 (2002).

    Article  Google Scholar 

  40. 40

    Hopkins, A.L. & Groom, C.R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    CAS  Article  Google Scholar 

  41. 41

    Margolin, A. et al. ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinformatics 7, S7 (2006).

  42. 42

    Niiro, H. & Clark, E.A. Regulation of B-cell fate by antigen-receptor signals. Nat. Rev. Immunol. 2, 945–956 (2002).

    CAS  Article  Google Scholar 

  43. 43

    Storey, J.D. & Tibshirani, R. Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100, 9440–9445 (2003).

    CAS  Article  Google Scholar 

  44. 44

    Karolchik, D. et al. The UCSC Genome Browser Database. Nucleic Acids Res. 31, 51–54 (2003).

    CAS  Article  Google Scholar 

  45. 45

    Bereshchenko, O.R., Gu, W. & Dalla-Favera, R. Acetylation inactivates the transcriptional repressor BCL6. Nat. Genet. 32, 606–613 (2002).

    CAS  Article  Google Scholar 

  46. 46

    Chang, C.C., Ye, B.H., Chaganti, R.S. & Dalla-Favera, R. BCL-6, a POZ/zinc-finger protein, is a sequence-specific transcriptional repressor. Proc. Natl. Acad. Sci. USA 93, 6947–6952 (1996).

    CAS  Article  Google Scholar 

  47. 47

    Phan, R.T., Saito, M., Basso, K., Niu, H. & Dalla-Favera, R. BCL6 interacts with the transcription factor Miz-1 to suppress the cyclin-dependent kinase inhibitor p21 and cell cycle arrest in germinal center B cells. Nat. Immunol. 6, 1054–1060 (2005).

    CAS  Article  Google Scholar 

  48. 48

    Niu, H., Cattoretti, G. & Dalla-Favera, R. BCL6 controls the expression of the B7–1/CD80 costimulatory receptor in germinal center B cells. J. Exp. Med. 198, 211–221 (2003).

    CAS  Article  Google Scholar 

  49. 49

    Pasqualucci, L. et al. Mutations of the BCL6 proto-oncogene disrupt its negative autoregulation in diffuse large B-cell lymphoma. Blood 101, 2914–2923 (2003).

    CAS  Article  Google Scholar 

  50. 50

    Lois, C., Hong, E.J., Pease, S., Brown, E.J. & Baltimore, D. Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors. Science 295, 868–872 (2002).

    CAS  Article  Google Scholar 

  51. 51

    Naldini, L. et al. In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272, 263–267 (1996).

    CAS  Article  Google Scholar 

Download references


This work was supported by the US National Cancer Institute (R01CA109755), the National Institute of Allergy and Infectious Diseases (R01AI066116) and the National Centers for Biomedical Computing NIH Roadmap Initiative (U54CA121852). I.N. was supported in part by the National Institute for General Medical Sciences (R21GM080216). A.A.M. was supported by an IBM PhD fellowship.

Author information




K.W. and A.C. designed the algorithm and the computational analysis procedures. I.N. and A.A.M. assisted in algorithm design and computational analysis. M.S. experimentally validated BHLHB2, MEF2B and HDAC1. B.C.B. experimentally validated STK38. M.J.A. and W.K.L. performed the analysis and validation of TFs other than MYC. I.N. and K.W. studied the information theoretic properties of the algorithm. P.R., Q.S., K.B. and U.K. assisted with the experimental validation and microarray expression profile generation. A.C., R.D.-F., M.S., BC.B., K.W. and K.B. designed the experimental assays. A.C., R.D.-F., K.W. and M.S. wrote the manuscript.

Corresponding author

Correspondence to Andrea Califano.

Ethics declarations

Competing interests

A.C. is a cofounder of Therasis, a company engaged in the discovery of combination therapy for cancer using systems biology approaches, and W.K.L. is currently employed by Therasis. MINDy is one of several algorithms that the company has licensed from Columbia University.

Supplementary information

Supplementary Text and Figures

Supplementary Notes 1–13, Supplementary Figures 1–8, and Supplementary Tables 2, 6, 9–13 (PDF 2979 kb)

Supplementary Text and Figures

Supplementary Table 1 (XLS 108 kb)

Supplementary Text and Figures

Supplementary Table 3 (XLS 29 kb)

Supplementary Text and Figures

Supplementary Table 4 (XLS 28 kb)

Supplementary Text and Figures

Supplementary Table 5 (XLS 28 kb)

Supplementary Text and Figures

Supplementary Table 7 (XLS 34 kb)

Supplementary Text and Figures

Supplementary Table 8 (XLS 27 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wang, K., Saito, M., Bisikirska, B. et al. Genome-wide identification of post-translational modulators of transcription factor activity in human B cells. Nat Biotechnol 27, 829–837 (2009).

Download citation

Further reading


Quick links