Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression


Genetic changes that help explain the differences between two individuals might create or disrupt sites complementary to microRNAs (miRNAs)1,2, but the extent to which such polymorphic sites influence miRNA-mediated repression is unknown. Here, we describe a method to measure mRNA allelic imbalances associated with a regulatory site found in mRNA transcribed from one allele but not found in that transcribed from the other. Applying this method, called allelic imbalance sequencing, to sites for three miRNAs (miR-1, miR-133 and miR-122) provided quantitative measurements of repression in vivo without altering either the miRNAs or their targets. A substantial fraction of polymorphic sites mediated repression in tissues that expressed the cognate miRNA, and downregulation was correlated with site type and site context. Extrapolating these results to the other broadly conserved miRNAs suggests that when comparing two mouse strains (or two human individuals), polymorphic miRNA sites cause expression of many genes (often hundreds) to differ.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Measurement of mRNA allelic imbalances associated with heterozygous miRNA target sites.
Figure 2: Impact of heterozygous target sites on mRNA allelic imbalance.
Figure 3: Dependence of target site efficacy on site type and site context.

Accession codes


Gene Expression Omnibus


  1. 1

    Clop, A. et al. A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat. Genet. 38, 813–818 (2006).

    CAS  Article  Google Scholar 

  2. 2

    Sethupathy, P. & Collins, F.S. MicroRNA target site polymorphisms and human disease. Trends Genet. 24, 489–497 (2008).

    CAS  Article  Google Scholar 

  3. 3

    Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215–233 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Lewis, B.P., Burge, C.B. & Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Brennecke, J., Stark, A., Russell, R.B. & Cohen, S.M. Principles of microRNA-target recognition. PLoS Biol. 3, e85 (2005).

    Article  Google Scholar 

  6. 6

    Krek, A. et al. Combinatorial microRNA target predictions. Nat. Genet. 37, 495–500 (2005).

    CAS  Article  Google Scholar 

  7. 7

    Lagos-Quintana, M. et al. Identification of tissue-specific microRNAs from mouse. Curr. Biol. 12, 735–739 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Frazer, K.A. et al. A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448, 1050–1053 (2007).

    CAS  Article  Google Scholar 

  9. 9

    Sherry, S.T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).

    CAS  Article  Google Scholar 

  10. 10

    Grimson, A. et al. MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Lim, L.P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769–773 (2005).

    CAS  Article  Google Scholar 

  12. 12

    Margulies, M. et al. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Chen, K. & Rajewsky, N. Natural selection on human microRNA binding sites inferred from SNP data. Nat. Genet. 38, 1452–1456 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Farh, K.K. et al. The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817–1821 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Stark, A., Brennecke, J., Bushati, N., Russell, R.B. & Cohen, S.M. Animal MicroRNAs confer robustness to gene expression and have a significant impact on 3′UTR evolution. Cell 123, 1133–1146 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Nielsen, C.B. et al. Determinants of targeting by endogenous and exogenous microRNAs and siRNAs. RNA 13, 1894–1910 (2007).

    CAS  Article  Google Scholar 

  17. 17

    Baek, D. et al. The impact of microRNAs on protein output. Nature 455, 64–71 (2008).

    CAS  Article  Google Scholar 

  18. 18

    Selbach, M. et al. Widespread changes in protein synthesis induced by microRNAs. Nature 455, 58–63 (2008).

    CAS  Article  Google Scholar 

  19. 19

    Friedman, R.C., Farh, K.K., Burge, C.B. & Bartel, D.P. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19, 92–105 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Cookson, W., Liang, L., Abecasis, G., Moffatt, M. & Lathrop, M. Mapping complex disease traits with global gene expression. Nat. Rev. Genet. 10, 184–194 (2009).

    CAS  Article  Google Scholar 

  21. 21

    Schadt, E.E. et al. Mapping the genetic architecture of gene expression in human liver. PLoS Biol. 6, e107 (2008).

    Article  Google Scholar 

  22. 22

    Lo, H.S. et al. Allelic variation in gene expression is common in the human genome. Genome Res. 13, 1855–1862 (2003).

    CAS  Article  Google Scholar 

  23. 23

    Gimelbrant, A., Hutchinson, J.N., Thompson, B.R. & Chess, A. Widespread monoallelic expression on human autosomes. Science 318, 1136–1140 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Tan, A.C. et al. Allele-specific expression in the germline of patients with familial pancreatic cancer: an unbiased approach to cancer gene discovery. Cancer Biol. Ther. 7, 135–144 (2008).

    CAS  Article  Google Scholar 

  25. 25

    Serre, D. et al. Differential allelic expression in the human genome: a robust approach to identify genetic and epigenetic cis-acting mechanisms regulating gene expression. PLoS Genet. 4, e1000006 (2008).

    Article  Google Scholar 

  26. 26

    International HapMap Consortium. A second generation human haplotype map of over 3.1 million SNPs. Nature 449, 851–861 (2007).

  27. 27

    Plagnol, V. et al. Extreme clonality in lymphoblastoid cell lines with implications for allele specific expression analyses. PLoS One 3, e2966 (2008).

    Article  Google Scholar 

  28. 28

    Lu, J. et al. MicroRNA expression profiles classify human cancers. Nature 435, 834–838 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Rodriguez, A. et al. Requirement of bic/microRNA-155 for normal immune function. Science 316, 608–611 (2007).

    CAS  Article  Google Scholar 

  30. 30

    Su, A.I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 101, 6062–6067 (2004).

    CAS  Article  Google Scholar 

Download references


We thank Tim Harkins and the 454 Sequencing Facility for high-throughput sequencing, members of the laboratory for helpful comments on this manuscript, and T. DiCesare for illustration. Supported by a grant from the National Institutes of Health. D.P.B. is an investigator of the Howard Hughes Medical Institute.

Author information




J.K. performed all experiments and analyses. Both authors designed the experiments and wrote the manuscript.

Corresponding author

Correspondence to David P Bartel.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Supplementary Discussion (PDF 194 kb)

Supplementary Table 1

Data and information on the SNPs in 3′UTRs that create/disrupt miRNA target sites. (XLS 66 kb)

Supplementary Table 2

Data and information on the SNPs in ORFs. (XLS 23 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kim, J., Bartel, D. Allelic imbalance sequencing reveals that single-nucleotide polymorphisms frequently alter microRNA-directed repression. Nat Biotechnol 27, 472–477 (2009).

Download citation

Further reading


Quick links