The divergent fates of primitive hydrospheric water on Earth and Mars

Abstract

Despite active transport into Earth’s mantle, water has been present on our planet’s surface for most of geological time1,2. Yet water disappeared from the Martian surface soon after its formation. Although some of the water on Mars was lost to space via photolysis following the collapse of the planet’s magnetic field3,4,5, the widespread serpentinization of Martian crust6,7 suggests that metamorphic hydration reactions played a critical part in the sequestration of the crust. Here we quantify the relative volumes of water that could be removed from each planet’s surface via the burial and metamorphism of hydrated mafic crusts, and calculate mineral transition-induced bulk-density changes at conditions of elevated pressure and temperature for each. The metamorphic mineral assemblages in relatively FeO-rich Martian lavas can hold about 25 per cent more structurally bound water than those in metamorphosed terrestrial basalts, and can retain it at greater depths within Mars. Our calculations suggest that in excess of 9 per cent by volume of the Martian mantle may contain hydrous mineral species as a consequence of surface reactions, compared to about 4 per cent by volume of Earth’s mantle. Furthermore, neither primitive nor evolved hydrated Martian crust show noticeably different bulk densities compared to their anhydrous equivalents, in contrast to hydrous mafic terrestrial crust, which transforms to denser eclogite upon dehydration. This would have allowed efficient overplating and burial of early Martian crust in a stagnant-lid tectonic regime, in which the lithosphere comprised a single tectonic plate, with only the warmer, lower crust involved in mantle convection. This provided an important sink for hydrospheric water and a mechanism for oxidizing the Martian mantle. Conversely, relatively buoyant mafic crust and hotter geothermal gradients on Earth reduced the potential for upper-mantle hydration early in its geological history, leading to water being retained close to its surface, and thus creating conditions conducive for the evolution of complex multicellular life.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Calculated petrophysical properties for each modelled basaltic protolith.
Figure 2: Degree of mantle hydration on Earth and Mars as a function of dewatering of metamorphosed basalts.
Figure 3: Schematic cross-sections through primitive Martian and terrestrial mafic crust.

References

  1. 1

    Peck, W. H., Valley, J. W., Wilde, S. A. & Graham, C. M. Oxygen isotope ratios and rare earth elements in 3.3 to 4.4 Gyr ago zircons: ion microprobe evidence for high δ18O continental crust and oceans in the early Archean. Geochim. Cosmochim. Acta 65, 4215–4229 (2001)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Korenaga, J. Thermal evolution with a hydrating mantle and the initiation of plate tectonics in the early Earth. J. Geophys. Res. Solid Earth 116, http://doi.org/10.1029/2011JB008410 (2011)

  3. 3

    Lillis, R. J. et al. An improved crustal magnetic field map of Mars from electron reflectometry: highland volcano magmatic history and the end of the martian dynamo. Icarus 194, 575–596 (2008)

    ADS  Article  Google Scholar 

  4. 4

    Acuña, M. H. et al. Global distribution of crustal magnetization discovered by the Mars Global Surveyor MAG/ER experiment. Science 284, 790–793 (1999)

    ADS  Article  Google Scholar 

  5. 5

    Dubinin, E. et al. Effects of solar irradiance on the upper ionosphere and oxygen ion escape at Mars: MAVEN observations. J. Geophys. Res. Space Physics 122, 7142–7152 (2017)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Ehlmann, B. L., Mustard, J. F. & Murchie, S. L. Geologic setting of serpentine deposits on Mars. Geophys. Res. Lett. 37, http://doi.org/10.1029/2010gl042596 (2010)

  7. 7

    Carter, J., Poulet, F., Bibring, J. P., Mangold, N. & Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. Planets 118, 831–858 (2013)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Yin, A. Structural analysis of the Valles Marineris fault zone: possible evidence for large-scale strike-slip faulting on Mars. Lithosphere 4, 286–330 (2012)

    ADS  Article  Google Scholar 

  9. 9

    Lammer, H. et al. Outgassing history and escape of the Martian atmosphere and water inventory. Space Sci. Rev. 174, 113–154 (2013)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Wordsworth, R. D. The climate of Early Mars. Ann. Rev. Earth Planet. Sci. 44, 381–408 (2016)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Di Achille, G. & Hynek, B. M. Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 3, 459–463 (2010)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Carr, M. H. & Head, J. W. Martian surface/near-surface water inventory: sources, sinks, and changes with time. Geophys. Res. Lett. 42, 726–732 (2015)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Chassefière, E., Langlais, B., Quesnel, Y. & Leblanc, F. The fate of early Mars’ lost water: the role of serpentinization. J. Geophys. Res. Planets 118, 1123–1134 (2013)

    ADS  Article  Google Scholar 

  14. 14

    Tuff, J., Wade, J. & Wood, B. J. Volcanism on Mars controlled by early oxidation of the upper mantle. Nature 498, 342–345 (2013)

    CAS  ADS  Article  Google Scholar 

  15. 15

    Wadhwa, M. Redox state of Mars’ upper mantle and crust from Eu anomalies in shergottite pyroxenes. Science 291, 1527–1530 (2001)

    CAS  ADS  Article  Google Scholar 

  16. 16

    McDonough, W. F. & Sun, S.-s. The composition of the Earth. Chem. Geol. 120, 223–253 (1995)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Dreibus, G. & Wanke, H. Mars, a volatile-rich planet. Meteoritics 20, 367–381 (1985)

    CAS  ADS  Google Scholar 

  18. 18

    White, W. M. & Klein, E. M. in Treatise on Geochemistry 2nd edn, Vol. 4, 457–496 (Elsevier, 2014)

  19. 19

    Squyres, S. W. et al. Pyroclastic activity at Home Plate in Gusev Crater, Mars. Science 316, 738–742 (2007)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Lessel, J. & Putirka, K. New thermobarometers for Martian igneous rocks, and some implications for secular cooling on Mars. Am. Mineral. 100, 2163–2171 (2015)

    ADS  Article  Google Scholar 

  21. 21

    Hartel, T. H. D. & Pattison, D. R. M. Genesis of the Kapuskasing (Ontario) migmatitic mafic granulites by dehydration melting of amphibolite: the importance of quartz to reaction progress. J. Metamorph. Geol. 14, 591–611 (1996)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Watson, L. L., Hutcheon, I. D., Epstein, S. & Stolper, E. M. Water on Mars—clues from deuterium/hydrogen and water contents of hydrous phases in SNC meteorites. Science 265, 86–90 (1994)

    CAS  ADS  Article  Google Scholar 

  23. 23

    Fischer, R. & Gerya, T. Early Earth plume-lid tectonics: a high-resolution 3D numerical modelling approach. J. Geodyn. 100, 198–214 (2016)

    Article  Google Scholar 

  24. 24

    François, C., Philippot, P., Rey, P. & Rubatto, D. Burial and exhumation during Archean sagduction in the East Pilbara Granite-Greenstone Terrane. Earth Planet. Sci. Lett. 396, 235–251 (2014)

    ADS  Article  Google Scholar 

  25. 25

    Palin, R. M. & White, R. W. Emergence of blueschists on Earth linked to secular changes in oceanic crust composition. Nat. Geosci. 9, 60–64 (2015)

    ADS  Article  Google Scholar 

  26. 26

    Williams, Q. & Hemley, R. J. Hydrogen in the deep Earth. Annu. Rev. Earth Planet. Sci. 29, 365–418 (2001)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Gilbert, M. C. Synthesis and stability relations of the hornblende ferropargasite. Am. J. Sci. 264, 698–742 (1966)

    ADS  Article  Google Scholar 

  28. 28

    Carr, M. H. & Head Iii, J. W. Geologic history of Mars. Earth Planet. Sci. Lett. 294, 185–203 (2010)

    CAS  ADS  Article  Google Scholar 

  29. 29

    Hauck, S. A. & Phillips, R. J. Thermal and crustal evolution of Mars. J. Geophys. Res. Planets 107, http://doi.org/10.1029/2001JE001801 (2002)

  30. 30

    Viviano, C. E., Moersch, J. E. & McSween, H. Y. Implications for early hydrothermal environments on Mars through the spectral evidence for carbonation and chloritization reactions in the Nili Fossae region. J. Geophys. Res. Planets 118, 1858–1872 (2013)

    CAS  ADS  Article  Google Scholar 

  31. 31

    Poli, S. & Schmidt, M. W. Petrology of subducted slabs. Annu. Rev. Earth Planet. Sci. 30, 207–235 (2002)

    CAS  ADS  Article  Google Scholar 

  32. 32

    Mouginot, J., Pommerol, A., Beck, P., Kofman, W. & Clifford, S. M. Dielectric map of the Martian northern hemisphere and the nature of plain filling materials. Geophys. Res. Lett. 39, http://doi.org/10.1029/2011gl050286 (2012)

  33. 33

    Usui, T., Alexander, C. M. O. D., Wang, J., Simon, J. I. & Jones, J. H. Meteoritic evidence for a previously unrecognized hydrogen reservoir on Mars. Earth Planet. Sci. Lett. 410, 140–151 (2015)

    CAS  ADS  Article  Google Scholar 

  34. 34

    Powell, R. & Holland, T. J. B. An internally consistent dataset with uncertainties and correlations. 3. Applications to geobarometry, worked examples and a computer program. J. Metamorph. Geol. 6, 173–204 (1988)

    CAS  ADS  Article  Google Scholar 

  35. 35

    Holland, T. J. B. & Powell, R. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids. J. Metamorph. Geol. 29, 333–383 (2011)

    CAS  ADS  Article  Google Scholar 

  36. 36

    Green, E. C. R. et al. Activity-composition relations for the calculation of partial melting equilibria in metabasic rocks. J. Metamorph. Geol. 34, 845–869 (2016)

    CAS  ADS  Article  Google Scholar 

  37. 37

    White, R. W., Powell, R., Holland, T. J. B., Johnson, T. E. & Green, E. C. R. New mineral activity-composition relations for thermodynamic calculations in metapelitic systems. J. Metamorph. Geol. 32, 261–286 (2014)

    CAS  ADS  Article  Google Scholar 

  38. 38

    Holland, T. & Powell, R. Activity-composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib. Mineral. Petrol. 145, 492–501 (2003)

    CAS  ADS  Article  Google Scholar 

  39. 39

    White, R. W., Powell, R. & Clarke, G. L. The interpretation of reaction textures in Fe-rich metapelitic granulites of the Musgrave Block, central Australia: constraints from mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3 . J. Metamorph. Geol. 20, 41–55 (2002)

    CAS  ADS  Article  Google Scholar 

  40. 40

    Berry, A. J., Danyushevsky, L. V., O’Neill, H. S. C., Newville, M. & Sutton, S. R. Oxidation state of iron in komatiitic melt inclusions indicates hot Archaean mantle. Nature 455, 960–963 (2008)

    CAS  ADS  Article  Google Scholar 

  41. 41

    Christie, D. M., Carmichael, I. S. E. & Langmuir, C. H. Oxidation states of Midocean Ridge basalt glasses. Earth Planet. Sci. Lett. 79, 397–411 (1986)

    CAS  ADS  Article  Google Scholar 

  42. 42

    Powell, R. & Holland, T. J. B. On thermobarometry. J. Metamorph. Geol. 26, 155–179 (2008)

    CAS  ADS  Article  Google Scholar 

  43. 43

    Palin, R. M., Weller, O. M., Waters, D. J. & Dyck, B. Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geosci. Front. 7, 591–607 (2016)

    Article  Google Scholar 

  44. 44

    White, R. W. Tutorial for Using the Readbulkinfo (rbi) Script. http://www.metamorph.geo.uni-mainz.de/thermocalc/tutorials/#rbi (Johannes Gutenberg University of Mainz, 2010)

  45. 45

    Vigneresse, J. L., Barbey, P. & Cuney, M. Rheological transitions during partial melting and crystallization with application to felsic magma segregation and transfer. J. Petrol. 37, 1579–1600 (1996)

    CAS  ADS  Article  Google Scholar 

  46. 46

    Rosenberg, C. L. & Handy, M. R. Experimental deformation of partially melted granite revisited: implications for the continental crust. J. Metamorph. Geol. 23, 19–28 (2005)

    ADS  Article  Google Scholar 

  47. 47

    Khorzhinskii, D. S. Physicochemical Basis of the Analysis of the Paragenesis of Minerals (Consultants Bureau, 1959)

  48. 48

    Thompson, J. B. Local equilibrium in metasomatic processes. Res. Geochem. 1, 427–457 (1959)

    Google Scholar 

  49. 49

    Guiraud, M., Powell, R. & Rebay, G. H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages. J. Metamorph. Geol. 19, 445–454 (2001)

    CAS  ADS  Article  Google Scholar 

  50. 50

    Powell, R., Holland, T. & Worley, B. Calculating phase diagrams involving solid solutions via non-linear equations, with examples using THERMOCALC. J. Metamorph. Geol. 16, 577–588 (1998)

    CAS  ADS  Article  Google Scholar 

  51. 51

    Connolly, J. A. D. Multivariable phase diagrams—an algorithm based on generalized thermodynamics. Am. J. Sci. 290, 666–718 (1990)

    ADS  Article  Google Scholar 

  52. 52

    Connolly, J. A. D. Computation of phase equilibria by linear programming: a tool for geodynamic modeling and its application to subduction zone decarbonation. Earth Planet. Sci. Lett. 236, 524–541 (2005)

    CAS  ADS  Article  Google Scholar 

  53. 53

    Palin, R. M. et al. High-grade metamorphism and partial melting of basic and intermediate rocks. J. Metamorph. Geol. 34, 871–892 (2016)

    CAS  ADS  Article  Google Scholar 

  54. 54

    Carson, C. J., Powell, R. & Clarke, G. L. Calculated mineral equilibria for eclogites in CaO-Na2O-FeO-MgO-Al2O3-SiO2-H2O: application to the Pouébo Terrane, Pam Peninsula, New Caledonia. J. Metamorph. Geol. 17, 9–24 (1999)

    CAS  ADS  Article  Google Scholar 

  55. 55

    White, R. W., Powell, R., Holland, T. J. B. & Worley, B. A. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O-FeO-MgO-Al2O3-SiO2-H2O-TiO2-Fe2O3 . J. Metamorph. Geol. 18, 497–511 (2000)

    CAS  ADS  Article  Google Scholar 

  56. 56

    Kretz, R. Symbols of rock-forming minerals. Am. Mineral. 68, 277–279 (1983)

    Google Scholar 

  57. 57

    Parsons, B. & Sclater, J. G. An analysis of the variation of ocean floor bathymetry and heat flow with age. J. Geophys. Res. 82, 803–827 (1977)

    ADS  Article  Google Scholar 

  58. 58

    Driscoll, P. & Bercovici, D. On the thermal and magnetic histories of Earth and Venus: influences of melting, radioactivity, and conductivity. Phys. Earth Planet. Inter. 236, 36–51 (2014)

    ADS  Article  Google Scholar 

  59. 59

    Michaut, C. & Jaupart, C. Secular cooling and thermal structure of continental lithosphere. Earth Planet. Sci. Lett. 257, 83–96 (2007)

    CAS  ADS  Article  Google Scholar 

  60. 60

    Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010)

    CAS  ADS  Article  Google Scholar 

  61. 61

    Filiberto, J. & Dasgupta, R. Constraints on the depth and thermal vigor of melting in the Martian mantle. J. Geophys. Res. Planets 120, 109–122 (2015)

    CAS  ADS  Article  Google Scholar 

  62. 62

    McKenzie, D., Jackson, J. & Priestley, K. Thermal structure of oceanic and continental lithosphere. Earth Planet. Sci. Lett. 233, 337–349 (2005)

    CAS  ADS  Article  Google Scholar 

  63. 63

    Kato, Y. & Nakamura, K. Origin and global tectonic significance of Early Archean cherts from the Marble Bar greenstone belt, Pilbara Craton, Western Australia. Precambr. Res. 125, 191–243 (2003)

    CAS  ADS  Article  Google Scholar 

  64. 64

    Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. J. & Schilling, J. G. The mean composition of ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489–518 (2013)

    CAS  ADS  Article  Google Scholar 

  65. 65

    McSween, H. Y. et al. Alkaline volcanic rocks from the Columbia Hills, Gusev Crater, Mars. J. Geophys. Res. Planets 111, E09S91 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

J.W. acknowledges receipt of an NERC Independent Research Fellowship NE/K009540/1. J.D.P.M. was supported by the National Research Foundation (NRF) of Singapore under the NRF Fellowship scheme (National Research Fellow award NRF-NRFF2013-04) and by the Earth Observatory of Singapore, the NRF, and the Singapore Ministry of Education under the Research Centres of Excellence initiative.

Author information

Affiliations

Authors

Contributions

J.W. conceived the idea in discussion with A.J.S. and performed initial calculations. R.M.P. and B.D. performed the petrological modelling. Thermal modelling was performed by J.D.P.M. All authors contributed to writing the final manuscript.

Corresponding author

Correspondence to Jon Wade.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks T. Usui and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Palaeo-Archaean high-Mg basalt pressure–temperature pseudosection.

Pressure–temperature pseudosection calculated for the bulk-rock composition of Palaeo-Archaean high-Mg basalt sample 02MB25663. Some small fields are unlabelled for clarity. Bold dashed line labelled ‘Early-Earth geotherm’ represents the pressure–temperature profile calculated via thermal modelling, and is enveloped by short-dashed lines representing upper and lower confidence intervals on these values. Some small fields are not labelled for clarity, and others are numbered and contain assemblages listed to the right of the phase diagram. Phase abbreviations are as follows: Ab, albite; Act, actinolite; Aug, augite; Bt, biotite; Chl, chlorite; Ep, epidote; Gln, glaucophane; Grt, garnet; Hbl, hornblende; H2O, aqueous fluid (water); Ilm, ilmenite; Ms, muscovite; Mt, magnetite; Ol, olivine; Opx, orthopyroxene; Pl, plagioclase; Qtz, quartz; Rt, rutile; Spn, sphene.

Extended Data Figure 2 N-MORB pressure–temperature pseudosection.

Pressure–temperature pseudosection calculated for the bulk-rock composition of N-MORB64. Some small fields are unlabelled for clarity. Bold dashed line labelled ‘Modern-day terrestrial geotherm’ represents the pressure–temperature profile calculated via thermal modelling, and is enveloped by short-dashed lines representing upper and lower confidence intervals on these values. Some small fields are not labelled for clarity, and others are numbered and contain assemblages listed to the right of the phase diagram. Phase abbreviations are as listed for Extended Data Fig. 1.

Extended Data Figure 3 Fastball (Mars) pressure–temperature pseudosection.

Pressure–temperature pseudosection calculated for the bulk-rock composition of Fastball19. Some small fields are unlabelled for clarity. Bold dashed line labelled ‘Early Martian aerotherm’ represents the pressure–temperature profile calculated via thermal modelling, and is enveloped by short-dashed lines representing upper and lower confidence intervals on these values. Some small fields are not labelled for clarity, and others are numbered and contain assemblages listed to the right of the phase diagram. Phase abbreviations are as listed for Extended Data Fig. 1.

Extended Data Figure 4 Backstay (Mars) pressure–temperature pseudosection.

Pressure–temperature pseudosection calculated for the bulk-rock composition of Backstay65. Some small fields are unlabelled for clarity. Bold dashed line labelled ‘Late-stage Martian aerotherm’ represents the pressure–temperature profile calculated via thermal modelling, and is enveloped by short-dashed lines representing upper and lower confidence intervals on these values. Some small fields are not labelled for clarity, and others are numbered and contain assemblages listed to the right of the phase diagram. Phase abbreviations are as listed for Extended Data Fig. 1.

Extended Data Figure 5 Hydrated terrestrial and Martian basalt mineral proportions.

Calculated mineral proportions, bulk-rock densities, and water contents during metamorphism of hydrated terrestrial and Martian basalts along their respective planetary geotherms and aerotherms. Vertical dashed lines represent pressure–temperature points at which melt extraction events occurred (see Methods). Phase abbreviations are as listed for Extended Data Fig. 1.

Extended Data Figure 6 Nominally anhydrous terrestrial and Martian basalts mineral proportions.

Calculated mineral proportion and bulk-rock densities during metamorphism of nominally anhydrous terrestrial and Martian basalts along their respective planetary geotherms and aerotherms. Vertical dashed lines represent pressure–temperature points at which melt extraction events occurred (see Methods). Phase abbreviations are as listed for Extended Data Fig. 1.

Extended Data Table 1 Bulk compositions of mafic crustal components used in this work (wt% oxides)
Extended Data Table 2 Bulk compositions used in phase-equilibrium modelling (mol% oxides) under minimally fluid-saturated conditions
Extended Data Table 3 Bulk compositions used in phase-equilibrium modelling (mol% oxides) under nominally dry conditions

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wade, J., Dyck, B., Palin, R. et al. The divergent fates of primitive hydrospheric water on Earth and Mars. Nature 552, 391–394 (2017). https://doi.org/10.1038/nature25031

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing