Letter

Solar abundance ratios of the iron-peak elements in the Perseus cluster

Received:
Accepted:
Published online:

Abstract

The metal abundance of the hot plasma that permeates galaxy clusters represents the accumulation of heavy elements produced by billions of supernovae1. Therefore, X-ray spectroscopy of the intracluster medium provides an opportunity to investigate the nature of supernova explosions integrated over cosmic time. In particular, the abundance of the iron-peak elements (chromium, manganese, iron and nickel) is key to understanding how the progenitors of typical type Ia supernovae evolve and explode2,3,4,5,6. Recent X-ray studies of the intracluster medium found that the abundance ratios of these elements differ substantially from those seen in the Sun7,8,9,10,11, suggesting differences between the nature of type Ia supernovae in the clusters and in the Milky Way. However, because the K-shell transition lines of chromium and manganese are weak and those of iron and nickel are very close in photon energy, high-resolution spectroscopy is required for an accurate determination of the abundances of these elements. Here we report observations of the Perseus cluster, with statistically significant detections of the resonance emission from chromium, manganese and nickel. Our measurements, combined with the latest atomic models, reveal that these elements have near-solar abundance ratios with respect to iron, in contrast to previous claims. Comparison between our results and modern nucleosynthesis calculations12,13,14 disfavours the hypothesis that type Ia supernova progenitors are exclusively white dwarfs with masses well below the Chandrasekhar limit (about 1.4 times the mass of the Sun). The observed abundance pattern of the iron-peak elements can be explained by taking into account a combination of near- and sub-Chandrasekhar-mass type Ia supernova systems, adding to the mounting evidence that both progenitor types make a substantial contribution to cosmic chemical enrichment5,15,16.

  • Subscribe to Nature for full access:

    $199

    Subscribe

Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

References

  1. 1.

    et al. Measurement of the elemental abundances in four rich clusters of galaxies. I. Observations. Astrophys. J. 466, 686–694 (1996)

  2. 2.

    , , , & X-ray evidence for spectroscopic diversity of type Ia supernovae. XMM observation of the elemental abundance pattern in M 87. Astron. Astrophys. 381, 21–31 (2002)

  3. 3.

    et al. Origin of central abundances in the hot intra-cluster medium. II. Chemical enrichment and supernova yield models. Astron. Astrophys. 595, A126 (2016)

  4. 4.

    et al. Nebular spectra and explosion asymmetry of Type Ia supernovae. Astrophys. J. 708, 1703–1715 (2010)

  5. 5.

    , , , & Solar abundance of manganese: a case for near Chandrasekhar-mass Type Ia supernova progenitors. Astron. Astrophys. 559, L5 (2013)

  6. 6.

    et al. A Chandrasekhar mass progenitor for the Type Ia supernova remnant 3C 397 from the enhanced abundances of nickel and manganese. Astrophys. J. 801, L31 (2015)

  7. 7.

    & . Constraints on type Ia supernova models from X-ray spectra of galaxy clusters. Astrophys. J. 528, 139–144 (2000)

  8. 8.

    & Ni abundance in the core of the Perseus cluster: an answer to the significance of resonant scattering. Astrophys. J. 600, 670–680 (2004)

  9. 9.

    et al. Constraining supernova models using the hot gas in clusters of galaxies. Astron. Astrophys. 465, 345–355 (2007)

  10. 10.

    & Metal abundances in the cool cores of galaxy clusters. Astron. Astrophys. 508, 565–574 (2009)

  11. 11.

    et al. Origin of central abundances in the hot intra-cluster medium. I. Individual and average abundance ratios from XMM-Newton EPIC. Astron. Astrophys. 592, A157 (2016)

  12. 12.

    et al. Three-dimensional delayed-detonation models with nucleosynthesis for Type Ia supernovae. Mon. Not. R. Astron. Soc. 429, 1156–1172 (2013)

  13. 13.

    et al. Normal type Ia supernovae from violent mergers of white dwarf binaries. Astrophys. J. 747, L10 (2012)

  14. 14.

    & Sub-Chandrasekhar mass models for supernovae. Astrophys. J. 734, 38 (2011)

  15. 15.

    , & The ejected mass distribution of Type Ia supernovae: a significant rate of non-Chandrasekhar-mass progenitors. Mon. Not. R. Astron. Soc. 445, 2535–2544 (2014)

  16. 16.

    , , & Evidence for sub-Chandrasekhar-mass progenitors of Type Ia supernovae at the faint end of the width-luminosity relation. Mon. Not. R. Astron. Soc. 470, 157–165 (2017)

  17. 17.

    Hitomi Collaboration. The quiescent intracluster medium in the core of the Perseus cluster. Nature 535, 117–121 (2016)

  18. 18.

    & Measurement of the elemental abundances in four rich clusters of galaxies. II. The initial mass function and mass loss in elliptical galaxies, enrichment, and energetics in the ICM. Astrophys. J. 466, 695–703 (1996)

  19. 19.

    , , , & Metal-mass-to-light ratios of the Perseus cluster out to the virial radius. Astrophys. J. 764, 147 (2013)

  20. 20.

    et al. Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998)

  21. 21.

    et al. Measurements of Ω and Λ from 42 high-redshift supernovae. Astrophys. J. 517, 565–586 (1999)

  22. 22.

    & Binaries and supernovae of type I. Astrophys. J. 186, 1007–1014 (1973)

  23. 23.

    Double white dwarfs as progenitors of R Coronae Borealis stars and Type I supernovae. Astrophys. J. 277, 355–360 (1984)

  24. 24.

    et al. Detonations in sub-Chandrasekhar-mass C+O white dwarfs. Astrophys. J. 714, L52–L57 (2010)

  25. 25.

    , & In Solar System (ed. ) 712–770 (Vol. VI/4B of Landolt Börnstein, New Series, Springer, 2009)

  26. 26.

    , & Early-type galaxy archeology: ages, abundance ratios, and effective temperatures from full-spectrum fitting. Astrophys. J. 780, 33 (2013)

  27. 27.

    , & Nucleosynthesis in stars and the chemical enrichment of galaxies. Annu. Rev. Astron. Astrophys. 51, 457–509 (2013)

  28. 28.

    et al. Type Ia and II supernovae contributions to metal enrichment in the intracluster medium observed with Suzaku. Astrophys. J. 667, L41–L44 (2007)

  29. 29.

    , & A new method to constrain supernova fractions using X-ray observations of clusters of galaxies. Astrophys. J. 753, 54 (2012)

  30. 30.

    , , & A uniform metal distribution in the intergalactic medium of the Perseus cluster of galaxies. Nature 502, 656–658 (2013)

  31. 31.

    et al. Ground calibration of the Astro-H (Hitomi) soft x-ray spectrometer. Proc. SPIE 9905 99053W (2016)

  32. 32.

    et al. Astro-H data analysis, processing and archive. Proc. SPIE 9905, 990514 (2016)

  33. 33.

    et al. In-flight verification of the calibration and performance of the ASTRO-H (Hitomi) Soft X-Ray Spectrometer. Proc. SPIE 9905, 99053U (2016)

  34. 34.

    et al. The Astro-H high resolution soft x-ray spectrometer. Proc. SPIE 9905, 99050V (2016)

  35. 35.

    et al. In-flight performance of the Soft X-ray Spectrometer detector system on Astro-H. Proc. SPIE 9905, 99050W (2016)

  36. 36.

    , , & TIGER observations of the low and high velocity components of NGC 1275. New Astron. 2, 345–363 (1997)

  37. 37.

    et al. First peek of ASTRO-H Soft X-ray Telescope (SXT) in-orbit performance. Proc. SPIE 9905, 99050Z (2016)

  38. 38.

    Parameter estimation in astronomy through application of the likelihood ratio. Astrophys. J. 228, 939–947 (1979)

  39. 39.

    et al. X-ray spectroscopy of the core of the Perseus cluster with Suzaku: elemental abundances in the intracluster medium. Astrophys. J. 705, L62–L66 (2009)

  40. 40.

    , , & Updated atomic data and calculations for X-ray spectroscopy. Astrophys. J. 756, 128 (2012)

  41. 41.

    , , , & XMM-Newton observations of the Perseus cluster - II. Evidence for gas motions in the core. Mon. Not. R. Astron. Soc. 347, 29–35 (2004)

  42. 42.

    et al. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI. Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections. Astron. Astrophys. 440, 775–782 (2005)

  43. 43.

    et al. Resonant scattering in the Perseus Cluster: spectral model for constraining gas motions with Astro-H. Mon. Not. R. Astron. Soc. 435, 3111–3121 (2013)

  44. 44.

    & A deeper X-ray study of the core of the Perseus galaxy cluster: the power of sound waves and the distribution of metals and cosmic rays. Mon. Not. R. Astron. Soc. 381, 1381–1399 (2007)

  45. 45.

    , & In UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas (eds & ) 411–414 (Universal Academy Press, 1996)

  46. 46.

    et al. Chemical enrichment in the cluster of galaxies Hydra A. Astron. Astrophys. 493, 409–424 (2009)

  47. 47.

    et al. Uniform contribution of supernova explosions to the chemical enrichment of Abell 3112 out to R200. Astrophys. J. 836, 110 (2017)

  48. 48.

    , & Calcium-rich gap transients: solving the calcium conundrum in the intracluster medium. Astrophys. J. 780, L34 (2013)

  49. 49.

    et al. Three-dimensional pure deflagration models with nucleosynthesis and synthetic observables for Type Ia supernovae. Mon. Not. R. Astron. Soc. 438, 1762–1783 (2014)

  50. 50.

    , , & Nucleosynthesis in multi-dimensional SN Ia explosions. Astron. Astrophys. 425, 1029–1040 (2004)

  51. 51.

    , , & Type Ia supernovae as sites of the p-process: two-dimensional models coupled to nucleosynthesis. Astrophys. J. 739, 93 (2011)

  52. 52.

    & Sensitivity study of explosive nucleosynthesis in type Ia supernovae: Modification of individual thermonuclear reaction rates. Phys. Rev. C 85, 055805 (2012)

  53. 53.

    & Diversity of Type Ia supernovae imprinted in chemical abundances. Astrophys. J. 760, L38 (2012)

  54. 54.

    & Shell-model calculations of stellar weak interaction rates: II. Weak rates for nuclei in the mass range A=45–65 in supernovae environments. Nucl. Phys. A 673, 481–508 (2000)

Download references

Acknowledgements

Acknowledgements are provided in the Supplementary Information.

Author information

Affiliations

  1. Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland

    • Felix Aharonian
    •  & Maria Chernyakova
  2. Max-Planck-Institut für Kernphysik, PO Box 103980, 69029 Heidelberg, Germany

    • Felix Aharonian
  3. Gran Sasso Science Institute, viale Francesco Crispi 7, 67100 L’ Aquila, Italy

    • Felix Aharonian
  4. SRON Netherlands Institute for Space Research, Sorbonnelaan 2, 3584 CA Utrecht, The Netherlands

    • Hiroki Akamatsu
    • , Elisa Costantini
    • , Jelle de Plaa
    • , Jan-Willem den Herder
    • , Margherita Giustini
    • , Liyi Gu
    • , Jelle Kaastra
    • , Missagh Mehdipour
    •  & Cor P. de Vries
  5. Institute for Space-Earth Environmental Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan

    • Fumie Akimoto
    • , Hiroyasu Tajima
    •  & Kazutaka Yamaoka
  6. Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, California 94305, USA

    • Steven W. Allen
    • , Roger Blandford
    • , Greg Madejski
    • , Hirokazu Odaka
    • , Dan R. Wilkins
    •  & Irina Zhuravleva
  7. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, California 94305, USA

    • Steven W. Allen
    • , Roger Blandford
    •  & Irina Zhuravleva
  8. SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA

    • Steven W. Allen
    •  & Roger Blandford
  9. NASA, Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, Maryland 20771, USA

    • Lorella Angelini
    • , Meng P. Chiao
    • , Megan E. Eckart
    • , Kenji Hamaguchi
    • , Ilana M. Harrus
    • , Ann Hornschemeier
    • , Tim Kallman
    • , Richard L. Kelley
    • , Caroline A. Kilbourne
    • , Maurice A. Leutenegger
    • , Michael Loewenstein
    • , Maxim Markevitch
    • , Hideyuki Mori
    • , Koji Mukai
    • , Takashi Okajima
    • , Robert Petre
    • , Frederick S. Porter
    • , Katja Pottschmidt
    • , Kazuhiro Sakai
    • , Peter J. Serlemitsos
    • , Yang Soong
    • , Francesco Tombesi
    • , Daniel R. Wik
    • , Hiroya Yamaguchi
    •  & Tahir Yaqoob
  10. Department of Astronomy, University of Geneva, ch. d’Écogia 16, CH-1290 Versoix, Switzerland

    • Marc Audard
    • , Carlo Ferrigno
    •  & Stéphane Paltani
  11. Department of Physics, Ehime University, Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan

    • Hisamitsu Awaki
    •  & Yuichi Terashima
  12. Department of Physics and Oskar Klein Center, Stockholm University, 106 91 Stockholm, Sweden

    • Magnus Axelsson
  13. Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

    • Aya Bamba
    • , Tsuneyoshi Kamae
    •  & Kazuhiro Nakazawa
  14. Research Center for the Early Universe, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

    • Aya Bamba
    •  & Kazuhiro Nakazawa
  15. Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA

    • Marshall W. Bautz
    • , Esra Bulbul
    •  & Eric D. Miller
  16. Smithsonian Astrophysical Observatory, 60 Garden Street, MS-4 Cambridge, Massachusetts 02138, USA

    • Laura W. Brenneman
    • , Esra Bulbul
    • , Adam R. Foster
    •  & Randall K. Smith
  17. Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550, USA

    • Gregory V. Brown
  18. Department of Physics and Astronomy, Wayne State University, 666 West Hancock Street, Detroit, Michigan 48201, USA

    • Edward M. Cackett
  19. Astronomy Department, Yale University, New Haven, Connecticut 06520-8101, USA

    • Paolo S. Coppi
  20. Physics Department, Yale University, New Haven, Connecticut 06520-8120, USA

    • Paolo S. Coppi
    • , Andrew Szymkowiak
    •  & C. Megan Urry
  21. Centre for Extragalactic Astronomy, Department of Physics, University of Durham, South Road, Durham DH1 3LE, UK

    • Chris Done
  22. Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan

    • Tadayasu Dotani
    • , Ken Ebisawa
    • , Katsuhiro Hayashi
    • , Ryo Iizuka
    • , Yoshiyuki Inoue
    • , Manabu Ishida
    • , Kumi Ishikawa
    • , Masachika Iwai
    • , Motohide Kokubun
    • , Shu Koyama
    • , Yoshitomo Maeda
    • , Kazuhisa Mitsuda
    • , Takao Nakagawa
    • , Masanobu Ozaki
    • , Goro Sato
    • , Rie Sato
    • , Aurora Simionescu
    • , Yasuharu Sugawara
    • , Tadayuki Takahashi
    • , Yoh Takei
    • , Takayuki Tamura
    • , Yasuo Tanaka
    • , Hiroshi Tomida
    • , Masahiro Tsujimoto
    • , Shutaro Ueda
    • , Shin Watanabe
    •  & Noriko Y. Yamasaki
  23. Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan

    • Teruaki Enoto
    • , Shiu-Hang Lee
    • , Shin Mineshige
    •  & Yoshihiro Ueda
  24. The Hakubi Center for Advanced Research, Kyoto University, Kyoto 606-8302, Japan

    • Teruaki Enoto
  25. Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan

    • Yuichiro Ezoe
    • , Yuto Ichinohe
    • , Yoshitaka Ishisaki
    • , Takaya Ohashi
    • , Hiromi Seta
    •  & Shinya Yamada
  26. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK

    • Andrew C. Fabian
    •  & Ciro Pinto
  27. Faculty of Mathematics and Physics, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan

    • Ryuichi Fujimoto
    •  & Daisuke Yonetoku
  28. School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan

    • Yasushi Fukazawa
    • , Takao Kitaguchi
    • , Tsunefumi Mizuno
    • , Masanori Ohno
    • , Hiromitsu Takahashi
    • , Yasuyuki T. Tanaka
    •  & Norbert Werner
  29. Fujita Health University, Toyoake, Aichi 470-1192, Japan

    • Akihiro Furuzawa
  30. Physics Department, University of Miami, 1320 Campo Sano Drive, Coral Gables, Florida 33146, USA

    • Massimiliano Galeazzi
    •  & Eugenio Ursino
  31. Department of Astronomy and Physics, Saint Mary’s University, 923 Robie Street, Halifax, Nova Scotia B3H 3C3, Canada

    • Luigi C. Gallo
  32. Department of Physics and Astronomy, University of Southampton, Highfield, Southampton SO17 1BJ, UK

    • Poshak Gandhi
  33. Laboratoire APC, 10 rue Alice Domon et Léonie Duquet, 75013 Paris, France

    • Andrea Goldwurm
    • , Philippe Laurent
    •  & Daniel Maier
  34. CEA Saclay, 91191 Gif sur Yvette, France

    • Andrea Goldwurm
    • , Philippe Laurent
    • , Olivier Limousine
    •  & Daniel Maier
  35. European Space Research and Technology Center, Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands

    • Matteo Guainazzi
    •  & David Lumb
  36. Department of Physics and Astronomy, Aichi University of Education, Aichi 448-8543, Japan

    • Yoshito Haba
  37. Department of Physics, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan

    • Kouichi Hagino
    •  & Takayoshi Kohmura
  38. Department of Physics, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA

    • Kenji Hamaguchi
    • , Ilana M. Harrus
    • , Maurice A. Leutenegger
    • , Koji Mukai
    • , Katja Pottschmidt
    •  & Tahir Yaqoob
  39. Department of Applied Physics and Electronic Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan

    • Isamu Hatsukade
    • , Koji Mori
    •  & Makoto Yamauchi
  40. Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan

    • Katsuhiro Hayashi
    • , Takayuki Hayashi
    • , Hideyo Kunieda
    • , Ikuyuki Mitsuishi
    • , Yuzuru Tawara
    •  & Kazutaka Yamaoka
  41. Department of Earth and Space Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560–0043, Japan

    • Kiyoshi Hayashida
    • , Hironori Matsumoto
    • , Hiroshi Nakajima
    •  & Hiroshi Tsunemi
  42. Department of Physics, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan

    • Junko S. Hiraga
  43. Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan

    • Akio Hoshino
    • , Shunji Kitamoto
    • , Shinya Saito
    •  & Yasunobu Uchiyama
  44. Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, New Jersey 08854, USA

    • John P. Hughes
  45. Meisei University, 2-1-1 Hodokubo, Hino, Tokyo 191-8506, Japan

    • Hajime Inoue
  46. Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands

    • Jelle Kaastra
  47. Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku, Tokyo 169-8555, Japan

    • Jun Kataoka
  48. Department of Physics, Chuo University, 1-13-27 Kasuga, Bunkyo, Tokyo 112-8551, Japan

    • Satoru Katsuda
    •  & Yohko Tsuboi
  49. Department of Physics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan

    • Nobuyuki Kawai
    • , Satoshi Sugita
    •  & Yoichi Yatsu
  50. Department of Physics, Toho University, 2-2-1 Miyama, Funabashi, Chiba 274-8510, Japan

    • Tetsu Kitayama
  51. Department of Physics, Kyoto University, Kitashirakawa-Oiwake-Cho, Sakyo, Kyoto 606–8502, Japan

    • Katsuji Koyama
    • , Takaaki Tanaka
    • , Takeshi Go Tsuru
    •  & Hiroyuki Uchida
  52. European Space Astronomy Center, Camino Bajo del Castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain

    • Peter Kretschmar
    •  & Norbert Schartel
  53. Universities Space Research Association, 7178 Columbia Gateway Drive, Columbia, Maryland 21046, USA

    • Hans A. Krimm
  54. National Science Foundation, 4201 Wilson Blvd, Arlington, Virginia 22230, USA

    • Hans A. Krimm
  55. Department of Electronic Information Systems, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan

    • Aya Kubota
  56. Department of Astronomy, University of Maryland, College Park, Maryland 20742, USA

    • Michael Loewenstein
    • , Richard F. Mushotzky
    • , Christopher S. Reynolds
    • , Francesco Tombesi
    •  & Hiroya Yamaguchi
  57. Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, Maryland 21218, USA

    • Knox S. Long
    •  & Brian J. Williams
  58. Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

    • Kazuo Makishima
    • , Shinya Nakashima
    •  & Megumi Shidatsu
  59. Department of Physics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan

    • Kyoko Matsushita
    • , Toru Sasaki
    •  & Kosuke Sato
  60. Department of Physics, University of Wisconsin, Madison, Wisconsin 53706, USA

    • Dan McCammon
  61. Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada

    • Brian R. McNamara
  62. Department of Astronomy, University of Michigan, 1085 South University Avenue, Ann Arbor, Michigan 48109, USA

    • Jon M. Miller
    •  & Abderahmen Zoghbi
  63. Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son Okinawa 904-0495, Japan

    • Takuya Miyazawa
    •  & Shin'ichiro Takeda
  64. Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526, Japan

    • Tsunefumi Mizuno
  65. Faculty of Liberal Arts, Tohoku Gakuin University, 2-1-1 Tenjinzawa, Izumi-ku, Sendai, Miyagi 981-3193, Japan

    • Hiroshi Murakami
  66. Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata 990-8560, Japan

    • Takeshi Nakamori
  67. Department of Physics, Nara Women’s University, Kitauoyanishi-machi, Nara, Nara 630-8506, Japan

    • Kumiko K. Nobukawa
    • , Naomi Ota
    •  & Shigeo Yamauchi
  68. Department of Teacher Training and School Education, Nara University of Education, Takabatake-cho, Nara 630-8528, Japan

    • Masayoshi Nobukawa
  69. Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramakiazaaoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan

    • Hirofumi Noda
  70. Astronomical Institute, Tohoku University, 6-3 Aramakiazaaoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan

    • Hirofumi Noda
  71. Astrophysics Laboratory, Columbia University, 550 West 120th Street, New York, New York 10027, USA

    • Frits Paerels
  72. Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada

    • Samar Safi-Harb
  73. Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan

    • Makoto Sawada
  74. Astronomical Observatory of Jagiellonian University, ul. Orla 171, 30-244 Kraków, Poland

    • Lukasz Stawarz
  75. RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

    • Toru Tamagawa
  76. Max Planck Institute for extraterrestrial Physics, Giessenbachstrasse 1, 85748 Garching, Germany

    • Yasuo Tanaka
  77. Department of Physics, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338–8570, Japan

    • Makoto S. Tashiro
    •  & Yukikatsu Terada
  78. Department of Physics, University of Rome ‘Tor Vergata’, Via della Ricerca Scientifica 1, I-00133 Rome, Italy

    • Francesco Tombesi
  79. Faculty of Education, Shizuoka University, 836 Ohya, Suruga-ku, Shizuok a 422-8529, Japan

    • Hideki Uchiyama
  80. Faculty of Health Sciences, Nihon Fukushi University, 26-2 Higashi Haemi-cho, Handa, Aichi 475-0012, Japan

    • Shin'ichiro Uno
  81. MTA-Eötvös University Lendület Hot Universe Research Group, Pázmány Péter sétány 1/A, Budapest 1117, Hungary

    • Norbert Werner
  82. Department of Theoretical Physics and Astrophysics, Faculty of Science, Masaryk University, Kotlávrská 2, Brno 611 37, Czech Republic

    • Norbert Werner
  83. Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, Utah 84112, USA

    • Daniel R. Wik
  84. The Johns Hopkins University, Homewood Campus, Baltimore, Maryland 21218, USA

    • Daniel R. Wik

Consortia

  1. Hitomi Collaboration

Authors

    Contributions

    H.Y. wrote the manuscript. H.Y., S.N., A. Simionescu, E.B. and M.L. analysed the data. H.Y., K. Matsushita, M.L., A. Simionescu, S.N., K.S. and R.M. discussed the results. Y. Ishisaki confirmed the reliability of the observed results using his expertise in the SXS signal processing system. The science goals of Hitomi were discussed and developed over more than 10 years by the ASTRO-H Science Working Group (SWG), all members of which are authors of this manuscript. All the instruments were prepared by the joint efforts of the team. Calibration of the Perseus dataset was carried out by members of the SXS team. The manuscript was subject to an internal collaboration-wide review process. All authors reviewed and approved the final version of the manuscript.

    Competing interests

    The author declare no competing financial interests.

    Corresponding authors

    Correspondence to Kyoko Matsushita or Hiroya Yamaguchi.

    Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

    Extended data

    Supplementary information

    PDF files

    1. 1.

      Supplementary Information

      This file contains the full acknowledgments for this paper.

    Comments

    By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.