Inflammatory bowel diseases are chronic gastrointestinal inflammatory disorders that affect millions of people worldwide. Genome-wide association studies have identified 200 inflammatory bowel disease-associated loci, but few have been conclusively resolved to specific functional variants. Here we report fine-mapping of 94 inflammatory bowel disease loci using high-density genotyping in 67,852 individuals. We pinpoint 18 associations to a single causal variant with greater than 95% certainty, and an additional 27 associations to a single variant with greater than 50% certainty. These 45 variants are significantly enriched for protein-coding changes (n = 13), direct disruption of transcription-factor binding sites (n = 3), and tissue-specific epigenetic marks (n = 10), with the last category showing enrichment in specific immune cells among associations stronger in Crohn’s disease and in gut mucosa among associations stronger in ulcerative colitis. The results of this study suggest that high-resolution fine-mapping in large samples can convert many discoveries from genome-wide association studies into statistically convincing causal variants, providing a powerful substrate for experimental elucidation of disease mechanisms.

  • Subscribe to Nature for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.

Change history

  • Corrected online 12 July 2017

    The equation at the end Methods section ‘Establishing a P value threshold’ was corrected.


  1. 1.

    et al. Direct health care costs of Crohn’s disease and ulcerative colitis in US children and adults. Gastroenterology 135, 1907–1913 (2008)

  2. 2.

    et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54.e42 (2012)

  3. 3.

    et al. Host–microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 (2012)

  4. 4.

    et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015)

  5. 5.

    , , , & Evaluating the performance of fine-mapping strategies at common variant GWAS loci. PLoS Genet. 11, e1005535 (2015)

  6. 6.

    et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012)

  7. 7.

    et al. FTO genotype is associated with phenotypic variability of body mass index. Nature 490, 267–272 (2012)

  8. 8.

    et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013)

  9. 9.

    et al. Fine mapping of type 1 diabetes susceptibility loci and evidence for colocalization of causal variants with lymphoid gene enhancers. Nat. Genet. 47, 381–386 (2015)

  10. 10.

    The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092 human genomes. Nature 491, 56–65 (2012)

  11. 11.

    The 1000 Genomes Project Consortium. A map of human genome variation from population-scale sequencing. Nature 467, 1061–1073 (2010)

  12. 12.

    Using Next-Generation Genomic Datasets in Disease Association. PhD thesis, Univ. Cambridge (2012)

  13. 13.

    , & A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet. 5, e1000529 (2009)

  14. 14.

    , & Genotype imputation with thousands of genomes. G3 1, 457–470 (2011)

  15. 15.

    et al. High-density mapping of the MHC identifies a shared role for HLA-DRB101:03 in inflammatory bowel diseases and heterozygous advantage in ulcerative colitis. Nat. Genet. 47, 172–179 (2015)

  16. 16.

    et al. Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease. Nat. Genet. 43, 1066–1073 (2011)

  17. 17.

    et al. Genome partitioning of genetic variation for complex traits using common SNPs. Nat. Genet. 43, 519–525 (2011)

  18. 18.

    , , , & Gene-based tests of association. PLoS Genet. 7, e1002177 (2011)

  19. 19.

    et al. Resequencing of positional candidates identifies low frequency IL23R coding variants protecting against inflammatory bowel disease. Nat. Genet. 43, 43–47 (2011)

  20. 20.

    & Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res. 42, 2976–2987 (2014)

  21. 21.

    et al. Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells. Nat. Immunol. 14, 867–875 (2013)

  22. 22.

    et al. Chromatin marks identify critical cell types for fine mapping complex trait variants. Nat. Genet. 45, 124–130 (2013)

  23. 23.

    et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518, 337–343 (2015)

  24. 24.

    et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 28, 1045–1048 (2010)

  25. 25.

    et al. Candidate causal regulatory effects by integration of expression QTLs with complex trait genetic associations. PLoS Genet. 6, e1000895 (2010)

  26. 26.

    et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501, 506–511 (2013)

  27. 27.

    et al. Statistical colocalization of monocyte gene expression and genetic risk variants for type 1 diabetes. Hum. Mol. Genet. 21, 2815–2824 (2012)

  28. 28.

    et al. Multiple common variants for celiac disease influencing immune gene expression. Nat. Genet. 42, 295–302 (2010)

  29. 29.

    et al. Heritability and genomics of gene expression in peripheral blood. Nat. Genet. 46, 430–437 (2014)

  30. 30.

    et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 45, 1238–1243 (2013)

  31. 31.

    et al. Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression. Science 343, 1246949 (2014)

  32. 32.

    Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014)

  33. 33.

    et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn’s disease susceptibility loci. Nat. Genet. 42, 1118–1125 (2010)

  34. 34.

    , , , & Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324, 387–389 (2009)

  35. 35.

    , , , & 1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 data. Eur. J. Hum. Genet. 20, 801–805 (2012)

  36. 36.

    & Strategies for fine-mapping complex traits. Hum. Mol. Genet. 24 (R1), R111–R119 (2015)

  37. 37.

    The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature 526, 68–74 (2015)

  38. 38.

    The UK10K Consortium. The UK10K project identifies rare variants in health and disease. Nature 526, 82–90 (2015)

  39. 39.

    Roadmap Epigenomics Consortium et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015)

  40. 40.

    et al. optiCall: a robust genotype-calling algorithm for rare, low-frequency and common variants. 28, 1598–1603 (2012)

  41. 41.

    et al. Long-range LD can confound genome scans in admixed populations. Am. J. Hum. Genet. 83, 132–135 (2008)

  42. 42.

    . et al. LAPACK Users’ Guide (Society for Industrial and Applied Mathematics, 1999)

  43. 43.

    et al. Genomic inflation factors under polygenic inheritance. Eur. J. Hum. Genet. 19, 807–812 (2011)

  44. 44.

    et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015)

  45. 45.

    et al. Genome-wide association study implicates immune activation of multiple integrin genes in inflammatory bowel disease. Nat. Genet. 49, 256–261 (2017)

  46. 46.

    , & A linear complexity phasing method for thousands of genomes. Nat. Methods 9, 179–181 (2011)

  47. 47.

    , & Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5–6 (2013)

  48. 48.

    , , & Evoker: a visualization tool for genotype intensity data. Bioinformatics 26, 1786–1787 (2010)

  49. 49.

    & Trinculo: Bayesian and frequentist multinomial logistic regression for genome-wide association studies of multi-category phenotypes. Bioinformatics 32, 1898–1900 (2016)

  50. 50.

    , , & GCTA: a tool for genome-wide complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011)

  51. 51.

    ., ., . & DMU-a package for analyzing multivariate mixed models. In Proc. 9th World Congress on Genetics Applied to Livestock Production 137 (Gesellschaft für Tierzuchtwissenschaften 2010), p. 137

  52. 52.

    . & Analysis of Binary Data 2nd edn, Ch. 2 (CRC, 1989)

  53. 53.

    What are DNA sequence motifs? Nat. Biotechnol 24, 423–425 (2006)

  54. 54.

    & BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842 (2010)

  55. 55.

    The International HapMap Consortium. The International HapMap Project. Nature 426, 789–796 (2003)

  56. 56.

    , , & Model-based variance-stabilizing transformation for Illumina microarray data. Nucleic Acids Res. 36, e11 (2008)

  57. 57.

    , , & A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185–193 (2003)

  58. 58.

    , & lumi: a pipeline for processing Illumina microarray. Bioinformatics 24, 1547–1548 (2008)

  59. 59.

    A direct approach to false discovery rates. J. Roy. Stat. Soc. B 64, 479–498 (2002)

  60. 60.

    et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014)

Download references


We thank M. Khan and B. Wong for their assistance in designing illustrations, and K. de Lange for comments on the Supplementary Methods. We received support from the following grants. M.J.D. and R.J.X.: P30DK43351, U01DK062432, R01DK64869, Helmsley grant 2015PG-IBD001 and Crohn’s & Colitis Foundation of America. G.T., C.A.A. and J.C.B: Wellcome Trust grant 098051. M.G.: Fonds de la Recherche Scientifique-FNRS for the FRFS-WELBIO under grant no. WELBIO-CR-2012A-06 (CAUSIBD), BELSPO-IUAP-P7/43-BeMGI, Fédération Wallonie-Bruxelles (ARC IBD@Ulg), and Région Wallonne (CIBLES, FEDER). H.H.: ASHG/Charles J. Epstein Trainee Award. J.L.: Wellcome Trust 098759/Z/12/Z. D.M.: Olle Engkvist Foundation and Swedish Research Council (grants 2010-2976 and 2013-3862). R.K.W.: VIDI grant (016.136.308) from the Netherlands Organization for Scientific Research. J.D.R.: Canada Research Chair, National Institute of Diabetes and Digestive and Kidney Diseases grants DK064869 and DK062432, CIHR GPG-102170 from the Canadian Institutes of Health Research, GPH-129341 from Genome Canada and Génome Québec, and Crohn’s Colitis Canada. J.H.C.: DK062429, DK062422, DK092235, DK106593, and the Sanford J. Grossman Charitable Trust. R.H.D.: Inflammatory Bowel Disease Genetic Research Chair at the University of Pittsburgh, U01DK062420 and R01CA141743. E.D.: Marie-Curie Fellowship. A.-S.G: Fonds de la Recherche Scientifique-FNRS (F.R.S.-FNRS) and Fonds Léon Fredericq fellowships. J.H.: Örebro University Hospital Research Foundation and the Swedish Research Council (grant number 521 2011 2764). C.G.M. and M.P.: National Institute for Health Research (NIHR) Biomedical Research Centre awards to Guy’s & St Thomas’ NHS Trust/King’s College London and to Addenbrooke’s Hospital/University of Cambridge School of Clinical Medicine. D.E.: German Federal Ministry of Education and Research (SysInflame grant 01ZX1306A), DFG Excellence Cluster number 306 ‘Inflammation at Interfaces’. A.F.: Professor of Foundation for Experimental Medicine (Zurich, Switzerland). D.P.B.M.: DK062413, AI067068, U54DE023789-01, 305479 from the European Union, and The Leona M. and Harry B. Helmsley Charitable Trust. Additional acknowledgements for the original data are in the Supplementary Information.

Author information

Author notes

    • Hailiang Huang
    • , Ming Fang
    •  & Luke Jostins

    These authors contributed equally to this work.

    • Hailiang Huang
    • , Michel Georges
    • , Mark J. Daly
    •  & Jeffrey C. Barrett

    These authors jointly supervised this work.


  1. Analytic and Translational Genetics Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA

    • Hailiang Huang
    • , Kyle Kai-How Farh
    •  & Mark J. Daly
  2. Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02141, USA

    • Hailiang Huang
    • , Kyle Kai-How Farh
    • , Ramnik J. Xavier
    •  & Mark J. Daly
  3. Unit of Medical Genomics, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA-R) Research Center and WELBIO, University of Liège, 4000 Liège, Belgium

    • Ming Fang
    • , François Crins
    • , Valérie Deffontaine
    • , Julia Dmitrieva
    • , Elisa Docampo
    • , Mahmoud Elansary
    • , Ann-Stephan Gori
    • , Edouard Louis
    • , Rob Mariman
    • , Myriam Mni
    • , Yukihide Momozawa
    • , Emilie Théâtre
    •  & Michel Georges
  4. Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium

    • Ming Fang
    • , François Crins
    • , Valérie Deffontaine
    • , Julia Dmitrieva
    • , Elisa Docampo
    • , Mahmoud Elansary
    • , Ann-Stephan Gori
    • , Rob Mariman
    • , Myriam Mni
    • , Yukihide Momozawa
    • , Emilie Théâtre
    •  & Michel Georges
  5. Wellcome Trust Centre for Human Genetics, University of Oxford, Headington OX3 7BN, UK

    • Luke Jostins
    •  & Adrian Cortes
  6. Christ Church, University of Oxford, St Aldates OX1 1DP, UK

    • Luke Jostins
  7. Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK

    • Maša Umićević Mirkov
    • , Carl A. Anderson
    • , Sarah L. Spain
    • , Gosia Trynka
    •  & Jeffrey C. Barrett
  8. Research Center, Montreal Heart Institute, Montréal, Québec H1T 1C8, Canada

    • Gabrielle Boucher
    • , Philippe Goyette
    •  & John D. Rioux
  9. Focused research unit for Molecular Diagnostic and Clinical Research (MOK), IRS-Center Sonderjylland, Hospital of Southern Jutland, 6200 Åbenrå, Denmark

    • Vibeke Andersen
  10. Institute of Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark

    • Vibeke Andersen
  11. Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium

    • Isabelle Cleynen
    •  & Severine Vermeire
  12. Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Division of Clinical Neurology, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DS, UK

    • Adrian Cortes
  13. Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, 17176 Stockholm, Sweden

    • Mauro D’Amato
  14. Department of Gastrointestinal and Liver Diseases, BioDonostia Health Research Institute, 20014 San Sebastián, Spain

    • Mauro D’Amato
  15. IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain

    • Mauro D’Amato
  16. Illumina, San Diego, California 92122, USA

    • Kyle Kai-How Farh
  17. Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, 24118 Kiel, Germany

    • Andre Franke
  18. Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, SE-70182 Örebro, Sweden

    • Jonas Halfvarson
  19. F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048, USA

    • Talin Haritunians
    •  & Dermot P. B. McGovern
  20. Data Science Institute and Lancaster Medical School, Lancaster University, Lancaster LA1 4YG, UK

    • Jo Knight
  21. Centre for Inflammatory Bowel Diseases, Saint John of God Hospital, Subiaco, Western Australia 6008, Australia

    • Ian C. Lawrance
  22. Harry Perkins Institute for Medical Research, School of Medicine and Pharmacology, University of Western Australia, Murdoch, Western Australia 6150, Australia

    • Ian C. Lawrance
  23. Gastrointestinal Unit, Western General Hospital University of Edinburgh, Edinburgh, UK

    • Charlie W. Lees
    •  & Jack Satsangi
  24. Division of Gastroenterology, Centre Hospitalier Universitaire (CHU) de Liège, 4000 Liège, Belgium

    • Edouard Louis
  25. Institute of Livestock and Aquacultural Sciences, Norwegian University of Life Sciences, 1430 Ås, Norway

    • Theo Meuwissen
  26. Laboratory for Genotyping Development, Center for Integrative Medical Sciences, RIKEN, Yokohama, Kanagawa 230-0045, Japan

    • Yukihide Momozawa
  27. Inflammatory Bowel Disease Research Group, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK

    • Miles Parkes
  28. Open Targets, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SD, UK

    • Sarah L. Spain
  29. Department of Gastroenterology and Hepatology, University of Groningen and University Medical Center Groningen, 9700RB Groningen, The Netherlands

    • Suzanne van Sommeren
    •  & Rinse K. Weersma
  30. Division of Gastroenterology, University Hospital Gasthuisberg, 3000 Leuven, Belgium

    • Severine Vermeire
  31. Gastroenterology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA

    • Ramnik J. Xavier
  32. Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA

    • Richard H. Duerr
  33. Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania 15261, USA

    • Richard H. Duerr
  34. Department of Medical and Molecular Genetics, King’s College London, London SE1 9RT, UK

    • Christopher G. Mathew
  35. Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg 2193, South Africa

    • Christopher G. Mathew
  36. Faculté de Médecine, Université de Montréal, Montréal, Québec H3C 3J7, Canada

    • John D. Rioux
  37. Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06510, USA

    • Judy H. Cho


  1. International Inflammatory Bowel Disease Genetics Consortium

    Lists of participants and their affiliations appear in the Supplementary Information.


  1. Search for Hailiang Huang in:

  2. Search for Ming Fang in:

  3. Search for Luke Jostins in:

  4. Search for Maša Umićević Mirkov in:

  5. Search for Gabrielle Boucher in:

  6. Search for Carl A. Anderson in:

  7. Search for Vibeke Andersen in:

  8. Search for Isabelle Cleynen in:

  9. Search for Adrian Cortes in:

  10. Search for François Crins in:

  11. Search for Mauro D’Amato in:

  12. Search for Valérie Deffontaine in:

  13. Search for Julia Dmitrieva in:

  14. Search for Elisa Docampo in:

  15. Search for Mahmoud Elansary in:

  16. Search for Kyle Kai-How Farh in:

  17. Search for Andre Franke in:

  18. Search for Ann-Stephan Gori in:

  19. Search for Philippe Goyette in:

  20. Search for Jonas Halfvarson in:

  21. Search for Talin Haritunians in:

  22. Search for Jo Knight in:

  23. Search for Ian C. Lawrance in:

  24. Search for Charlie W. Lees in:

  25. Search for Edouard Louis in:

  26. Search for Rob Mariman in:

  27. Search for Theo Meuwissen in:

  28. Search for Myriam Mni in:

  29. Search for Yukihide Momozawa in:

  30. Search for Miles Parkes in:

  31. Search for Sarah L. Spain in:

  32. Search for Emilie Théâtre in:

  33. Search for Gosia Trynka in:

  34. Search for Jack Satsangi in:

  35. Search for Suzanne van Sommeren in:

  36. Search for Severine Vermeire in:

  37. Search for Ramnik J. Xavier in:

  38. Search for Rinse K. Weersma in:

  39. Search for Richard H. Duerr in:

  40. Search for Christopher G. Mathew in:

  41. Search for John D. Rioux in:

  42. Search for Dermot P. B. McGovern in:

  43. Search for Judy H. Cho in:

  44. Search for Michel Georges in:

  45. Search for Mark J. Daly in:

  46. Search for Jeffrey C. Barrett in:


Overall project supervision and management: M.J.D. J.C.B., M.G. Fine-mapping algorithms: H.H., M.F., L.J. TFBS analyses: H.H., K.F. Epigenetic analyses: M.U.M., G.T. eQTL dataset generation: E.L., E.T., J.D., E.D., M.E., R.M., M.M., Y.M., V.D., A.G. eQTL analyses: M.F., J.D., L.J., A.C. Variance component analysis: T.M., M.F. Contribution to overall statistical analyses: G.B. Primary drafting of the manuscript: M.J.D., J.C.B, M.G., H.H., L.J. Major contribution to drafting of the manuscript: M.F., M.U.M., J.H.C., D.P.B.M., J.D.R., C.G.M., R.H.D., R.K.W. The remaining authors contributed to the study conception, design, genotyping quality control, and/or writing of the manuscript. All authors saw, had the opportunity to comment on, and approved the final draft.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Hailiang Huang or Michel Georges or Mark J. Daly or Jeffrey C. Barrett.

Reviewer Information Nature thanks A. Morris, C. Polychronakos, L. Scott, and T. Vyse for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Methods, Supplementary Notes, a Supplementary Box, the full list of members of the International Inflammatory Bowel Disease Genetics Consortium and acknowledgements for the original data.

Excel files

  1. 1.

    Supplementary Table 1

    This table contains a list of all fine-mapped signals, a list of all variants in fine-mapped signals and Functional annotation for all fine-mapped signals.

  2. 2.

    Supplementary Table 2

    This table shows enrichment for histone marks in various cell lines.

  3. 3.

    Supplementary Table 3

    This table shows test of heterogeneity between the balanced and imbalanced cohorts.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.