This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Tayi, A. S. et al. Room-temperature ferroelectricity in supramolecular networks of charge-transfer complexes. Nature 488, 485–489 (2012)
Tayi, A. S., Kaeser, A., Matsumoto, M., Aida, T. & Stupp, S. I. Supramolecular ferroelectrics. Nat. Chem. 7, 281–294 (2015)
Blackburn, A. K. et al. Lock-arm supramolecular ordering: a molecular construction set for cocrystallizing organic charge transfer complexes. J. Am. Chem. Soc. 136, 17224–17235 (2014)
Horiuchi, S. & Tokura, Y. Organic ferroelectrics. Nat. Mater. 7, 357–366 (2008)
Kobayashi, K. et al. Electronic ferroelectricity in a molecular crystal with large polarization directing antiparallel to ionic displacement. Phys. Rev. Lett. 108, 237601 (2012)
Pecile, C., Painelli, A. & Girlando, A. Studies of organic semiconductors for 40 years—V. Mol. Cryst. Liq. Cryst. 171, 69–87 (1989)
Colthup, N. B., Daly, L. H. & Wiberly, S. E. Introduction to Infrared and Raman Spectrocopy 90 (Academic Press, 1990)
Ranzieri, P., Masino, M. & Girlando, A. Charge-sensitive vibrations in p-chloranil: the strange case of the CC antisymmetric stretching. J. Phys. Chem. B 111, 12844–12848 (2007)
Ranzieri, P., Masino, M., Girlando, A. & Lemée-Cailleau, M. H. Temperature-induced valence and structural instability in DMTTF-CA: single-crystal Raman and infrared measurements. Phys. Rev. B 76, 134115 (2007)
D’Avino, G. & Verstraete, M. J. Are hydrogen-bonded charge transfer crystals room temperature ferroelectrics? Phys. Rev. Lett. 113, 237602 (2014)
D’Avino, G., Girlando, A. & Painelli, A. Anomalous dispersion of optical phonons at the neutral-ionic transition: evidence from diffuse X-ray scattering. Phys. Rev. Lett. 99, 156407 (2007)
Giovannetti, G., Kumar, S., Stroppa, A., Van Den Brink, J. & Picozzi, S. Multiferroicity in TTF-CA organic molecular crystals predicted through ab initio calculations. Phys. Rev. Lett. 103, 266401 (2009)
Horiuchi, S. et al. Above-room-temperature ferroelectricity in a single-component molecular crystal. Nature 463, 789–792 (2010)
Lunkenheimer, P. et al. Multiferroicity in an organic charge-transfer salt that is suggestive of electric-dipole-driven magnetism. Nat. Mater. 11, 755–758 (2012)
Scott, J. F. Ferroelectrics go bananas. J. Phys. Condens. Matter 20, 021001 (2007)
Author information
Authors and Affiliations
Contributions
G.D. and A.G. designed the research and wrote the Comment with contributions from the other authors. Experimental work was performed by M.S. and I.R. (materials synthesis and crystallization), X.F. (X-ray diffraction), M.M. (vibrational spectra) and J.K.H.F. (dielectric measurements). G.D. and G.G. performed DFT calculations. All authors discussed the results and contributed to data analysis.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
Extended Data Figure 1 Raman spectra of compounds 1, 2 and 1·2.
The negligible frequency variation of the C=O mode between 1 and 1·2 further confirms the very small charge transfer (ρ ≈ 0) in the co-crystal, as is also evident from the infrared spectra in Fig. 1c. Raman intensity is given in counts per second per mW of laser power.
Extended Data Figure 2 Additional electric measurements for LASO compound 1·2.
a, Picture of two of the single crystals of 1·2 after removal of the contacts. The measured crystals are of good quality, with smooth surfaces and no branching or splintering. b, Electric-field-dependent polarization of 1·2 at 7 K (circles). c, d, Room-temperature time-dependent excitation field (c) and current response (d) of the positive-up, negative-down measurements. The responses of pulses I and II are identical, just as the responses of pulses III and IV are identical, indicating the absence of polar order.
Supplementary information
Supplementary Information
This file contains Supplementary Text, Supplementary Figures 1-5, Supplementary Table 1 and Supplementary References. (PDF 1258 kb)
PowerPoint slides
Rights and permissions
About this article
Cite this article
D’Avino, G., Souto, M., Masino, M. et al. Conflicting evidence for ferroelectricity. Nature 547, E9–E10 (2017). https://doi.org/10.1038/nature22801
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature22801
This article is cited by
-
Tayi et al. reply
Nature (2017)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.