Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nutrient acquisition strategies of mammalian cells

Abstract

Mammalian cells are surrounded by diverse nutrients, such as glucose, amino acids, various macromolecules and micronutrients, which they can import through transmembrane transporters and endolysosomal pathways. By using different nutrient sources, cells gain metabolic flexibility to survive periods of starvation. Quiescent cells take up sufficient nutrients to sustain homeostasis. However, proliferating cells depend on growth-factor-induced increases in nutrient uptake to support biomass formation. Here, we review cellular nutrient acquisition strategies and their regulation by growth factors and cell-intrinsic nutrient sensors. We also discuss how oncogenes and tumour suppressors promote nutrient uptake and thereby support the survival and growth of cancer cells.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: The nutritional requirements for mammalian cell growth.
Figure 2: Coordination of cell growth and nutrient uptake.
Figure 3: Metabolic control by the mTORC1 signalling pathway.
Figure 4: Growth factor signalling regulates the repertoire of nutrient uptake pathways in mammalian cells.
Figure 5: Metabolic cooperation between cancer cells and non-transformed cells.

References

  1. Nelson, D. L. & Cox, M. M. Lehninger Principles of Biochemistry 6th edn ( W.H. Freeman, 2012)

  2. Vander Heiden, M. G., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eagle, H. Nutrition needs of mammalian cells in tissue culture. Science 122, 501–514 (1955)

    ADS  CAS  PubMed  Google Scholar 

  4. Alberts, B. M. et al. Molecular Biology of the Cell 6th edn (Garland Science, 2014)

  5. Kratz, A., Ferraro, M., Sluss, P. M. & Lewandrowski, K. B. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Laboratory reference values. N. Engl. J. Med. 351, 1548–1563 (2004)

    CAS  PubMed  Google Scholar 

  6. Cairns, R. A., Harris, I. S. & Mak, T. W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 11, 85–95 (2011)

    CAS  PubMed  Google Scholar 

  7. Pavlova, N. N. & Thompson, C. B. The emerging hallmarks of cancer metabolism. Cell Metab. 23, 27–47 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  8. DeBerardinis, R. J. & Chandel, N. S. Fundamentals of cancer metabolism. Sci. Adv. 2, e1600200 (2016)

    ADS  PubMed  PubMed Central  Google Scholar 

  9. Brown, M. S. & Goldstein, J. L. The SREBP pathway: regulation of cholesterol metabolism by proteolysis of a membrane-bound transcription factor. Cell 89, 331–340 (1997)

    CAS  PubMed  Google Scholar 

  10. Chantranupong, L., Wolfson, R. L. & Sabatini, D. M. Nutrient-sensing mechanisms across evolution. Cell 161, 67–83 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  11. González, A. & Hall, M. N. Nutrient sensing and TOR signaling in yeast and mammals. EMBO J. 36, 397–408 (2017)

    PubMed  PubMed Central  Google Scholar 

  12. Laplante, M. & Sabatini, D. M. mTOR signaling in growth control and disease. Cell 149, 274–293 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hardie, D. G., Ross, F. A. & Hawley, S. A. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13, 251–262 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Inoki, K., Kim, J. & Guan, K. L. AMPK and mTOR in cellular energy homeostasis and drug targets. Annu. Rev. Pharmacol. Toxicol. 52, 381–400 (2012)

    CAS  PubMed  Google Scholar 

  15. Hahn-Windgassen, A. et al. Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J. Biol. Chem. 280, 32081–32089 (2005)

    CAS  PubMed  Google Scholar 

  16. Rathmell, J. C., Vander Heiden, M. G., Harris, M. H., Frauwirth, K. A. & Thompson, C. B. In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Mol. Cell 6, 683–692 (2000). This work shows that even quiescent mammalian cells require growth factor stimulation to take up sufficient glucose to maintain bioenergetics at a level that supports cell survival

    CAS  PubMed  Google Scholar 

  17. Cong, L. N. et al. Physiological role of Akt in insulin-stimulated translocation of GLUT4 in transfected rat adipose cells. Mol. Endocrinol. 11, 1881–1890 (1997)

    CAS  PubMed  Google Scholar 

  18. Kohn, A. D., Summers, S. A., Birnbaum, M. J. & Roth, R. A. Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J. Biol. Chem. 271, 31372–31378 (1996)

    CAS  PubMed  Google Scholar 

  19. Rathmell, J. C. et al. Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol. Cell. Biol. 23, 7315–7328 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Barthel, A. et al. Regulation of GLUT1 gene transcription by the serine/threonine kinase Akt1. J. Biol. Chem. 274, 20281–20286 (1999)

    CAS  PubMed  Google Scholar 

  21. Hu, H. et al. Phosphoinositide 3-kinase regulates glycolysis through mobilization of aldolase from the actin cytoskeleton. Cell 164, 433–446 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Gottlob, K. et al. Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev. 15, 1406–1418 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Deprez, J., Vertommen, D., Alessi, D. R., Hue, L. & Rider, M. H. Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J. Biol. Chem. 272, 17269–17275 (1997)

    CAS  PubMed  Google Scholar 

  24. Flier, J. S., Mueckler, M. M., Usher, P. & Lodish, H. F. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. Science 235, 1492–1495 (1987). This paper reports the first link between oncogenic Ras and Src variants and increased glucose transporter expression, providing a molecular association between cellular transformation and enhanced glucose uptake

    ADS  CAS  PubMed  Google Scholar 

  25. Gaglio, D. et al. Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol. 7, 523 (2011)

    PubMed  PubMed Central  Google Scholar 

  26. Ying, H. et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 149, 656–670 (2012). This paper documents metabolic changes that occur during cancer development, demonstrating how a driver oncogene can globally reprogram cellular metabolism during tumorigenesis

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Makinoshima, H. et al. Epidermal growth factor receptor (EGFR) signaling regulates global metabolic pathways in EGFR-mutated lung adenocarcinoma. J. Biol. Chem. 289, 20813–20823 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Warburg, O. & Negelein, E. Über den Stoffwechsel der Carcinomzelle. Biochem. Zeitschr. 152, 309–344 (1924)

    CAS  Google Scholar 

  29. Wu, N. et al. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol. Cell 49, 1167–1175 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Abbud, W. et al. Stimulation of AMP-activated protein kinase (AMPK) is associated with enhancement of Glut1-mediated glucose transport. Arch. Biochem. Biophys. 380, 347–352 (2000)

    CAS  PubMed  Google Scholar 

  31. Barnes, K. et al. Activation of GLUT1 by metabolic and osmotic stress: potential involvement of AMP-activated protein kinase (AMPK). J. Cell Sci. 115, 2433–2442 (2002)

    CAS  PubMed  Google Scholar 

  32. Kim, J. W., Tchernyshyov, I., Semenza, G. L. & Dang, C. V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3, 177–185 (2006)

    PubMed  Google Scholar 

  33. Lum, J. J. et al. The transcription factor HIF-1α plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 21, 1037–1049 (2007)

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Seagroves, T. N. et al. Transcription factor HIF-1 is a necessary mediator of the Pasteur effect in mammalian cells. Mol. Cell. Biol. 21, 3436–3444 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Semenza, G. L. et al. Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J. Biol. Chem. 271, 32529–32537 (1996)

    CAS  PubMed  Google Scholar 

  36. Ebert, B. L., Firth, J. D. & Ratcliffe, P. J. Hypoxia and mitochondrial inhibitors regulate expression of glucose transporter-1 via distinct cis-acting sequences. J. Biol. Chem. 270, 29083–29089 (1995)

    CAS  PubMed  Google Scholar 

  37. Wise, D. R. et al. Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc. Natl Acad. Sci. USA 105, 18782–18787 (2008)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Gao, P. et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762–765 (2009)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Palmada, M., Speil, A., Jeyaraj, S., Böhmer, C. & Lang, F. The serine/threonine kinases SGK1, 3 and PKB stimulate the amino acid transporter ASCT2. Biochem. Biophys. Res. Commun. 331, 272–277 (2005)

    CAS  PubMed  Google Scholar 

  40. Edinger, A. L. & Thompson, C. B. Akt maintains cell size and survival by increasing mTOR-dependent nutrient uptake. Mol. Biol. Cell 13, 2276–2288 (2002). This paper shows that Akt promotes survival of mammalian cells in part by maintaining plasma membrane presentation of a variety of nutrient transporters and endocytic receptors of nutrient carriers

    CAS  PubMed  PubMed Central  Google Scholar 

  41. McMahon, H. T. & Boucrot, E. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12, 517–533 (2011)

    CAS  PubMed  Google Scholar 

  42. Hentze, M. W., Muckenthaler, M. U., Galy, B. & Camaschella, C. Two to tango: regulation of mammalian iron metabolism. Cell 142, 24–38 (2010)

    CAS  PubMed  Google Scholar 

  43. Streicher, R. et al. SREBP-1 mediates activation of the low density lipoprotein receptor promoter by insulin and insulin-like growth factor-I. J. Biol. Chem. 271, 7128–7133 (1996)

    CAS  PubMed  Google Scholar 

  44. Porstmann, T. et al. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 8, 224–236 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Neckers, L. M. & Cossman, J. Transferrin receptor induction in mitogen-stimulated human T lymphocytes is required for DNA synthesis and cell division and is regulated by interleukin 2. Proc. Natl Acad. Sci. USA 80, 3494–3498 (1983)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Davis, R. J. & Czech, M. P. Regulation of transferrin receptor expression at the cell surface by insulin-like growth factors, epidermal growth factor and platelet-derived growth factor. EMBO J. 5, 653–658 (1986)

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Galvez, T. et al. siRNA screen of the human signaling proteome identifies the PtdIns(3,4,5)P3–mTOR signaling pathway as a primary regulator of transferrin uptake. Genome Biol. 8, R142 (2007)

    PubMed  PubMed Central  Google Scholar 

  48. Guo, D. et al. An LXR agonist promotes glioblastoma cell death through inhibition of an EGFR/AKT/SREBP-1/LDLR-dependent pathway. Cancer Discov. 1, 442–456 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gatter, K. C., Brown, G., Trowbridge, I. S., Woolston, R. E. & Mason, D. Y. Transferrin receptors in human tissues: their distribution and possible clinical relevance. J. Clin. Pathol. 36, 539–545 (1983)

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Bloomfield, G. & Kay, R. R. Uses and abuses of macropinocytosis. J. Cell Sci. 129, 2697–2705 (2016)

    CAS  PubMed  Google Scholar 

  51. Swanson, J. A. Shaping cups into phagosomes and macropinosomes. Nat. Rev. Mol. Cell Biol. 9, 639–649 (2008)

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Haigler, H. T., McKanna, J. A. & Cohen, S. Rapid stimulation of pinocytosis in human carcinoma cells A-431 by epidermal growth factor. J. Cell Biol. 83, 82–90 (1979)

    CAS  PubMed  Google Scholar 

  53. Brunk, U., Schellens, J. & Westermark, B. Influence of epidermal growth factor (EGF) on ruffling activity, pinocytosis and proliferation of cultivated human glia cells. Exp. Cell Res. 103, 295–302 (1976)

    CAS  PubMed  Google Scholar 

  54. Bar-Sagi, D. & Feramisco, J. R. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233, 1061–1068 (1986)

    ADS  CAS  PubMed  Google Scholar 

  55. Amyere, M. et al. Constitutive macropinocytosis in oncogene-transformed fibroblasts depends on sequential permanent activation of phosphoinositide 3-kinase and phospholipase C. Mol. Biol. Cell 11, 3453–3467 (2000)

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Commisso, C . et al. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497, 633–637 (2013). This study establishes that macropinocytosis allows Ras-transformed cells to use extracellular proteins as an amino acid source, suggesting that macropinocytosis induction contributes to the oncogenic properties of Ras mutations

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Palm, W. et al. The utilization of extracellular proteins as nutrients is suppressed by mTORC1. Cell 162, 259–270 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Kamphorst, J. J. et al. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res. 75, 544–553 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Stehle, G. et al. Plasma protein (albumin) catabolism by the tumor itself—implications for tumor metabolism and the genesis of cachexia. Crit. Rev. Oncol. Hematol. 26, 77–100 (1997)

    CAS  PubMed  Google Scholar 

  60. Davidson, S. M. et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat. Med. 23, 235–241 (2017)

    CAS  PubMed  Google Scholar 

  61. van der Vusse, G. J. Albumin as fatty acid transporter. Drug Metab. Pharmacokinet. 24, 300–307 (2009)

    CAS  PubMed  Google Scholar 

  62. Chaudhury, C. et al. The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J. Exp. Med. 197, 315–322 (2003)

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Henson, P. M., Bratton, D. L. & Fadok, V. A. Apoptotic cell removal. Curr. Biol. 11, R795–R805 (2001)

    CAS  PubMed  Google Scholar 

  64. Krajcovic, M., Krishna, S., Akkari, L., Joyce, J. A. & Overholtzer, M. mTOR regulates phagosome and entotic vacuole fission. Mol. Biol. Cell 24, 3736–3745 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Sun, Q. et al. Competition between human cells by entosis. Cell Res. 24, 1299–1310 (2014)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rabinowitz, J. D. & White, E. Autophagy and metabolism. Science 330, 1344–1348 (2010)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. Degenhardt, K. et al. Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10, 51–64 (2006)

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Guo, J. Y. et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460–470 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, S. et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717–729 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lum, J. J. et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 120, 237–248 (2005)

    CAS  PubMed  Google Scholar 

  71. Ganley, I. G. et al. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 284, 12297–12305 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Jung, C. H. et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 20, 1992–2003 (2009)

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Martina, J. A., Chen, Y., Gucek, M. & Puertollano, R. MTORC1 functions as a transcriptional regulator of autophagy by preventing nuclear transport of TFEB. Autophagy 8, 903–914 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Roczniak-Ferguson, A. et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci. Signal. 5, ra42 (2012)

    PubMed  PubMed Central  Google Scholar 

  75. Settembre, C. et al. A lysosome-to-nucleus signalling mechanism senses and regulates the lysosome via mTOR and TFEB. EMBO J. 31, 1095–1108 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Yuneva, M., Zamboni, N., Oefner, P., Sachidanandam, R. & Lazebnik, Y. Deficiency in glutamine but not glucose induces MYC-dependent apoptosis in human cells. J. Cell Biol. 178, 93–105 (2007). This paper is one of the first studies to demonstrate both the importance of glutamine for cell survival and the role of Myc overexpression in causing cellular glutamine addiction

    CAS  PubMed  PubMed Central  Google Scholar 

  77. DeBerardinis, R. J. et al. Beyond aerobic glycolysis: transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl Acad. Sci. USA 104, 19345–19350 (2007)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  78. Fan, J. et al. Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol. 9, 712 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Mullen, A. R. et al. Reductive carboxylation supports growth in tumour cells with defective mitochondria. Nature 481, 385–388 (2011)

    ADS  PubMed  PubMed Central  Google Scholar 

  80. Metallo, C. M. et al. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481, 380–384 (2011)

    ADS  PubMed  PubMed Central  Google Scholar 

  81. Mashimo, T. et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159, 1603–1614 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Comerford, S. A. et al. Acetate dependence of tumors. Cell 159, 1591–1602 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Vincent, E. E. et al. Mitochondrial phosphoenolpyruvate carboxykinase regulates metabolic adaptation and enables glucose-independent tumor growth. Mol. Cell 60, 195–207 (2015)

    CAS  PubMed  Google Scholar 

  84. Sellers, K. et al. Pyruvate carboxylase is critical for non-small-cell lung cancer proliferation. J. Clin. Invest. 125, 687–698 (2015)

    PubMed  PubMed Central  Google Scholar 

  85. Marin-Valencia, I. et al. Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human glioblastomas in the mouse brain in vivo. Cell Metab. 15, 827–837 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Cheng, T. et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc. Natl Acad. Sci. USA 108, 8674–8679 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  87. Davidson, S. M. et al. Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab. 23, 517–528 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Carey, B. W., Finley, L. W., Cross, J. R., Allis, C. D. & Thompson, C. B. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518, 413–416 (2015)

    ADS  CAS  PubMed  Google Scholar 

  89. Mayers, J. R. et al. Tissue of origin dictates branched-chain amino acid metabolism in mutant Kras-driven cancers. Science 353, 1161–1165 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Tönjes, M. et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat. Med. 19, 901–908 (2013)

    PubMed  PubMed Central  Google Scholar 

  91. Hosios, A. M. et al. Amino acids rather than glucose account for the majority of cell mass in proliferating mammalian cells. Dev. Cell 36, 540–549 (2016). This work provides comprehensive quantification of how different nutrients contribute to macromolecular synthesis and biomass in proliferating mammalian cell lines

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Ye, J. et al. Pyruvate kinase M2 promotes de novo serine synthesis to sustain mTORC1 activity and cell proliferation. Proc. Natl Acad. Sci. USA 109, 6904–6909 (2012)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ye, J. et al. The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J. 29, 2082–2096 (2010)

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Zhang, J. et al. Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion. Mol. Cell 56, 205–218 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Santos, C. R. & Schulze, A. Lipid metabolism in cancer. FEBS J. 279, 2610–2623 (2012)

    CAS  PubMed  Google Scholar 

  96. Bailey, J. M. Lipid metabolism in cultured cells. V. Comparative lipid nutrition in serum and in lipid-free chemically defined medium. Proc. Soc. Exp. Biol. Med. 115, 747–750 (1964)

    CAS  PubMed  Google Scholar 

  97. Brown, M. S. & Goldstein, J. L. Familial hypercholesterolemia: defective binding of lipoproteins to cultured fibroblasts associated with impaired regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase activity. Proc. Natl Acad. Sci. USA 71, 788–792 (1974)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  98. Louie, S. M., Roberts, L. S., Mulvihill, M. M., Luo, K. & Nomura, D. K. Cancer cells incorporate and remodel exogenous palmitate into structural and oncogenic signaling lipids. Biochim. Biophys. Acta 1831, 1566–1572 (2013)

    CAS  PubMed  Google Scholar 

  99. Young, R. M. et al. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress. Genes Dev. 27, 1115–1131 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Kamphorst, J. J. et al. Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl Acad. Sci. USA 110, 8882–8887 (2013)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pascual, G. et al. Targeting metastasis-initiating cells through the fatty acid receptor CD36. Nature 541, 41–45 (2017)

    ADS  CAS  PubMed  Google Scholar 

  102. Bauer, D. E., Hatzivassiliou, G., Zhao, F., Andreadis, C. & Thompson, C. B. ATP citrate lyase is an important component of cell growth and transformation. Oncogene 24, 6314–6322 (2005)

    CAS  PubMed  Google Scholar 

  103. Camarda, R. et al. Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer. Nat. Med. 22, 427–432 (2016)

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Caro, P. et al. Metabolic signatures uncover distinct targets in molecular subsets of diffuse large B cell lymphoma. Cancer Cell 22, 547–560 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Nieman, K. M. et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 17, 1498–1503 (2011)

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tardito, S. et al. Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat. Cell Biol. 17, 1556–1568 (2015)

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Zhang, W. et al. Stromal control of cystine metabolism promotes cancer cell survival in chronic lymphocytic leukaemia. Nat. Cell Biol. 14, 276–286 (2012). This paper gives an early example of metabolic coupling in a tumour microenvironment by demonstrating that leukaemia cells express only low levels of cystine transporters and rely on import of cysteine that is provided by stromal cells

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Sousa, C. M. et al. Pancreatic stellate cells support tumour metabolism through autophagic alanine secretion. Nature 536, 479–483 (2016)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  109. Muranen, T. et al. Starved epithelial cells uptake extracellular matrix for survival. Nat. Commun. 8, 13989 (2017)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mayers, J. R. et al. Elevation of circulating branched-chain amino acids is an early event in human pancreatic adenocarcinoma development. Nat. Med. 20, 1193–1198 (2014)

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Das, S. K. et al. Adipose triglyceride lipase contributes to cancer-associated cachexia. Science 333, 233–238 (2011)

    ADS  CAS  PubMed  Google Scholar 

  112. Lewis, W. H. Pinocytosis. Bull. Johns Hopkins Hosp. 49, 17–26 (1931)

    Google Scholar 

Download references

Acknowledgements

We thank members of the Thompson laboratory and in particular L. Finley and T. Lindsten for discussions. W.P. is the recipient of the Genentech Foundation Hope Funds for Cancer Research Fellowship. Work in the Thompson laboratory is supported by a grant from NCI to C.B.T. (R01 CA201318) and Cancer Center Support Grant P30CA008748.

Author information

Authors and Affiliations

Authors

Contributions

W.P. and C.B.T. conceived and wrote the manuscript.

Corresponding author

Correspondence to Craig B. Thompson.

Ethics declarations

Competing interests

C.B.T. is a founder of Agios Pharmaceuticals and a member of its scientific advisory board. C.B.T. also serves on the board of directors of Merck and Charles River Laboratories.

Additional information

Reviewer Information Nature thanks H. Christofk, K. E. Wellen and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Palm, W., Thompson, C. Nutrient acquisition strategies of mammalian cells. Nature 546, 234–242 (2017). https://doi.org/10.1038/nature22379

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature22379

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer