Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Continental crust formation on early Earth controlled by intrusive magmatism

Abstract

The global geodynamic regime of early Earth, which operated before the onset of plate tectonics, remains contentious. As geological and geochemical data suggest hotter Archean mantle temperature1,2 and more intense juvenile magmatism than in the present-day Earth3,4, two crust–mantle interaction modes differing in melt eruption efficiency have been proposed: the Io-like heat-pipe tectonics regime dominated by volcanism5,6 and the “Plutonic squishy lid” tectonics regime governed by intrusive magmatism, which is thought to apply to the dynamics of Venus7,8,9. Both tectonics regimes are capable of producing primordial tonalite–trondhjemite–granodiorite (TTG) continental crust5,10 but lithospheric geotherms and crust production rates as well as proportions of various TTG compositions differ greatly9,10, which implies that the heat-pipe and Plutonic squishy lid hypotheses can be tested using natural data11. Here we investigate the creation of primordial TTG-like continental crust using self-consistent numerical models of global thermochemical convection associated with magmatic processes. We show that the volcanism-dominated heat-pipe tectonics model results in cold crustal geotherms and is not able to produce Earth-like primordial continental crust. In contrast, the Plutonic squishy lid tectonics regime dominated by intrusive magmatism results in hotter crustal geotherms and is capable of reproducing the observed proportions of various TTG rocks. Using a systematic parameter study, we show that the typical modern eruption efficiency of less than 40 per cent12 leads to the production of the expected amounts of the three main primordial crustal compositions previously reported from field data4,11 (low-, medium- and high-pressure TTG). Our study thus suggests that the pre-plate-tectonics Archean Earth operated globally in the Plutonic squishy lid regime rather than in an Io-like heat-pipe regime.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The impact of the emplacement mechanism on the geotherm.
Figure 2: Time evolution of the reference model.
Figure 3: Amount of all TTG types produced in our models.

References

  1. 1

    Herzberg, C. & Gazel, E. Petrological evidence for secular cooling in mantle plumes. Nature 458, 619–622 (2009)

    ADS  CAS  PubMed  Google Scholar 

  2. 2

    Condie, K., Aster, R. & van Hunen, J. A great thermal divergence in the mantle beginning 2.5 Ga: geochemical constraints from greenstone basalts and komatiites. Geosci. Frontiers 7, 543–553 (2016)

    CAS  Google Scholar 

  3. 3

    Condie, K. Accretionary orogens in space and time. Geol. Soc. Am. 200, 145–158 (2007)

    Google Scholar 

  4. 4

    Dhuime, B., Hawkesworth, C., Cawood, P. & Storey, C. A change in the geodynamics of continental growth 3 billion years ago. Science 335, 1334–1336 (2012)

    ADS  CAS  PubMed  Google Scholar 

  5. 5

    Moore, W. & Webb, A. Heat-pipe earth. Nature 501, 501–505 (2013)

    ADS  CAS  PubMed  Google Scholar 

  6. 6

    Johnson, T., Brown, M., Kaus, B. & VanTongeren, J. Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat. Geosci. 7, 47–52 (2014)

    ADS  CAS  Google Scholar 

  7. 7

    Van Kranendonk, M. Two types of Archean continental crust: plume and plate tectonics on early earth. Am. J. Sci. 310, 1187–1209 (2010)

    ADS  Google Scholar 

  8. 8

    Gerya, T., Stern, R., Baes, M., Sobolev, S. & Whattam, S. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015)

    ADS  CAS  PubMed  Google Scholar 

  9. 9

    Fischer, R. & Gerya, T. Early earth plume-lid tectonics: a high-resolution 3d numerical modelling approach. J. Geodyn. 100, 198–214 (2016)

    Google Scholar 

  10. 10

    Sizova, E., Gerya, T., Stüwe, K. & Brown, M. Generation of felsic crust in the Archean: a geodynamic modeling perspective. Precambr. Res. 271, 198–224 (2015)

    ADS  CAS  Google Scholar 

  11. 11

    Moyen, J. The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123, 21–36 (2011)

    ADS  CAS  Google Scholar 

  12. 12

    Crisp, J. A. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984)

    ADS  Google Scholar 

  13. 13

    Benn, K ., Mareschal, J.-C . & Condie, K. in Archean Geodynamics and Environments (eds Benn, K ., Mareschal, J.-C . & Condie, K. ) 1–5 (AGU, 2006)

  14. 14

    Gerya, T. Precambrian geodynamics: concepts and models. Gondwana Res. 25, 442–463 (2014)

    ADS  Google Scholar 

  15. 15

    Rey, P., Coltice, N. & Flament, N. Spreading continents kick-started plate tectonics. Nature 513, 405–408 (2014)

    ADS  CAS  PubMed  Google Scholar 

  16. 16

    Bédard, J. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta 70, 1188–1214 (2006)

    ADS  Google Scholar 

  17. 17

    de Smet, J., van den Berg, A. & Vlaar, N. The evolution of continental roots in numerical thermo-chemical mantle convection models including differentiation by partial melting. Lithos 48, 153–170 (1999)

    ADS  CAS  Google Scholar 

  18. 18

    Lourenço, D., Rozel, A. & Tackley, P. Melting-induced crustal production helps plate tectonics on earth-like planets. Earth Planet. Sci. Lett. 439, 18–28 (2016)

    ADS  Google Scholar 

  19. 19

    Tackley, P. J. Self consistent generation of tectonic plates in time-dependent, three dimensional mantle convection simulations. Part 1: pseudoplastic yielding. Geochem. Geosyst. Geophys. 1, 1026 (2000)

    ADS  Google Scholar 

  20. 20

    Byerlee, J. Friction of rocks. Pure Appl. Geophys. 116, 615–626 (1978)

    ADS  Google Scholar 

  21. 21

    Strom, R., Schaber, G. & Dawson, D. The global resurfacing of Venus. J. Geophys. Res. 99, 10899–10926 (1994)

    ADS  Google Scholar 

  22. 22

    Armann, M. & Tackley, P. Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models. J. Geophys. Res. 117, E12003 (2012)

    ADS  Google Scholar 

  23. 23

    Tackley, P. J. Modelling compressible mantle convection with large viscosity contrasts in a three-dimensional spherical shell using the yin-yang grid. Phys. Earth Planet. Inter. 171, 7–18 (2008)

    ADS  Google Scholar 

  24. 24

    Hernlund, J. W. & Tackley, P. J. Modeling mantle convection in the spherical annulus. Phys. Earth Planet. Inter. 171, 48–54 (2008)

    ADS  Google Scholar 

  25. 25

    Amestoy, P ., Duff, I . & l’Excellent, J.-Y. Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184, 501–520 (2000)

    ADS  MATH  Google Scholar 

  26. 26

    Harlow, F. & Welch, J. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Phys. Fluids 8, 2182 (1965)

    ADS  MathSciNet  MATH  Google Scholar 

  27. 27

    Nakagawa, T. & Tackley, P. Thermo-chemical structure in the mantle arising from a three-component convective system and implications for geochemistry. Phys. Earth Planet. Inter. 146, 125–138 (2004)

    ADS  CAS  Google Scholar 

  28. 28

    Nakagawa, T. & Tackley, P. Influence of magmatism on mantle cooling, surface heat flow and Urey ratio. Earth Planet. Sci. Lett. 329/330, 1–10 (2012)

    ADS  Google Scholar 

  29. 29

    Karato, S.-I. & Wu, P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993)

    ADS  CAS  PubMed  Google Scholar 

  30. 30

    Yamazaki, D. & Karato, S.-I. Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am. Mineral. 86, 385–391 (2001)

    ADS  CAS  Google Scholar 

  31. 31

    Tackley, P., Ammann, M., Brodholt, J., Dobson, D. & Valencia, D. Mantle dynamics in super-Earths: post-perovskite rheology and self-regulation of viscosity. Icarus 225, 50–61 (2013)

    ADS  Google Scholar 

  32. 32

    Cˇ ížková, H., van den Berg, A., Spakman, W. & Matyska, C. The viscosity of Earth’s lower mantle inferred from sinking speed of subducted lithosphere. Phys. Earth Planet. Inter. 200/201, 56–62 (2012)

    ADS  Google Scholar 

  33. 33

    Irifune, T. & Ringwood, A. Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600-800 km in the mantle. Earth Planet. Sci. Lett. 117, 101–110 (1993)

    ADS  CAS  Google Scholar 

  34. 34

    Ono, S., Ito, E. & Katsura, T. Mineralogy of subducted basaltic crust (MORB) from 25 to 37 GPa, and chemical heterogeneity of the lower mantle. Earth Planet. Sci. Lett. 190, 57–63 (2001)

    ADS  CAS  Google Scholar 

  35. 35

    Moyen, J.-F . & Stevens, G. in Archean Geodynamics and Environments (eds Benn, K ., Mareschal, J.-C . & Condie, K. ) 149–178 (AGU, 2006)

  36. 36

    Van Kranendonk, M. in Earth’s Oldest Rocks (eds Kranendonk, M. V ., Smithies, R . & Bennet, V .) 1st edn, Developments in Precambrian Geology Vol. 15, 1105–1116 (Elsevier, 2007)

  37. 37

    Nutman, A. et al. in Earth Accretionary Systems in Space and Time (eds Cawood, P. & Kröner, A. ) 1st edn, Vol. 318, 127–154 (Spec. Publ. Geol. Soc. Lond., GSL, 2009)

  38. 38

    van Hunen, J. & Moyen, J.-F. Archean subduction: fact or fiction? Annu. Rev. Earth Planet. Sci. 40, 195–219 (2012)

    ADS  CAS  Google Scholar 

  39. 39

    Griffin, W . & O’Reilly, S. in Earth’s Oldest Rocks (eds Kranendonk, M. V ., Smithies, R . & Bennet, V. ) 1st edn, Developments in Precambrian Geology Vol. 15, Ch. 8.2, 1013–1035 (Elsevier, 2007)

  40. 40

    Hickman, A . & Kranendonk, M. V. in The Precambrian Earth: Tempos and Events Vol. 12, 118–139 (Elsevier, 2004)

  41. 41

    Labrosse, S ., Hernlund, J . & Hirose, K. in The Early Earth 123–142 (John Wiley & Sons, 2015)

  42. 42

    Harris, L. & Bédard, J. in Evolution of Archean Crust and Early Life (eds Dilek, Y. & Furnes, H. ) Modern Approaches In Solid Earth Sciences Vol. 7, Ch. 9, 215–288 (Springer, 2014)

  43. 43

    Harris, L . & Bédard, J. in Volcanism and Tectonism Across the Inner Solar System (eds Platz, T ., Massironi, M ., Byrne, P. K . & Hiesinger, H. ) Vol. 401, 327–356 (Spec. Publ. Geol. Soc. Lond., GSL, 2015)

  44. 44

    Schaber, G. et al. Geology and distribution of impact craters on Venus: what are they telling us? J. Geophys. Res. 97, 13257–13301 (1992)

    ADS  Google Scholar 

  45. 45

    Herrick, R. Resurfacing history of Venus. Geology 22, 703–706 (1994)

    ADS  Google Scholar 

  46. 46

    McKinnon, W ., Zahnle, K ., Ivanov, B . & Melosh, H. in Venus II (eds Bougher, S ., Hunten, D . & Phillips, R. ) 969–1014 (Univ. Arizona Press, 1997)

  47. 47

    Tackley, P. in European Geosciences Union General Assembly Conference Abstracts Vol. 17, 13804 (EGU, 2015)

  48. 48

    Basilevsky, A. & Head, J. The surface of Venus. Rep. Prog. Phys. 66, 1699–1734 (2003)

    ADS  Google Scholar 

  49. 49

    Aittola, M. & Kostama, V.-P. Venusian novae and arachnoids: characteristics, differences and the effect of the geological environment. Planet. Space Sci. 48, 1479–1489 (2000)

    ADS  Google Scholar 

  50. 50

    Krassilnikov, A. & Head, J. Novae on Venus: geology, classification, and evolution. J. Geophys. Res. 108, 5108 (2003)

    Google Scholar 

  51. 51

    Barsukov, V. et al. Preliminary evidence on the geology of Venus from radar measurements by the Venera 15 and 16 probes. Geokhimia 12, 1811–1820 (1984)

    Google Scholar 

  52. 52

    Stofan, E. et al. Global distribution and characteristics of coronae and related features on Venus: implications for origin and relation to mantle processes. J. Geophys. Res. 97, 13347–13378 (1992)

    ADS  Google Scholar 

  53. 53

    Stofan, E., Smrekar, S., Tapper, S., Guest, J. & Grindrod, P. Preliminary analysis of an expanded corona database for Venus. Geophys. Res. Lett. 28, 4267–4270 (2001)

    ADS  Google Scholar 

  54. 54

    Grinrod, P. & Hoogenboom, T. Venus: the corona conundrum. Astron. Geophys. 47, 16–21 (2006)

    Google Scholar 

  55. 55

    Bindschadler, D . & Head, J. Tessera terrain, Venus: characterization and models for origin and evolution. J. Geophys. Res. 96, 5889–5907 (1991)

    ADS  Google Scholar 

  56. 56

    Sandwell, D. & Schubert, G. Evidence for retrograte lithosphere subduction on Venus. Science 257, 766–770 (1992)

    ADS  CAS  PubMed  Google Scholar 

  57. 57

    Ernst, R., Grosfils, E. & Mége, D. Giant dike swarms: Earth, Venus, and Mars. Annu. Rev. Earth Planet. Sci. 29, 489–534 (2001)

    ADS  CAS  Google Scholar 

  58. 58

    Smrekar, S. & Stofan, E. Corona formation and heat loss on Venus by coupled upwelling and delamination. Science 277, 1289–1294 (1997)

    ADS  CAS  Google Scholar 

  59. 59

    Hoogenboom, T. & Houseman, G. Rayleigh-Taylor instability as a mechanism for corona formation on Venus. Icarus 180, 292–307 (2006)

    ADS  Google Scholar 

  60. 60

    Anderson, F. & Smrekar, S. Global mapping of crustal and lithospheric thickness on Venus. J. Geophys. Res. 111, E08006 (2006)

    ADS  Google Scholar 

  61. 61

    James, P., Zuber, M. & Phillips, R. Crustal thickness and support of topography on Venus. J. Geophys. Res. 118, 859–875 (2013)

    Google Scholar 

  62. 62

    Gerya, T. Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus. Earth Planet. Sci. Lett. 391, 183–192 (2014)

    ADS  CAS  Google Scholar 

  63. 63

    Nutman, A. P. Antiquity of the oceans and continents. Elements 2, 4 (2006)

    Google Scholar 

Download references

Acknowledgements

We thank K. Condie, L. Moresi and M. Van Kranendonk for comments and suggestions as part of the review process. A.B.R. and C.J. received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/20072013)/ERC Grant Agreement number 320639 project iGEO. T.G. received support from the SNF projects Swiss-AlpArray and number 200020_166063.

Author information

Affiliations

Authors

Contributions

A.B.R., G.J.G., C.J. and T.G. designed the set of numerical simulations. P.J.T. implemented the eruption–intrusion routines in the convection code. A.B.R. wrote all postprocessing routines and produced the figures. All authors contributed to the manuscript.

Corresponding author

Correspondence to A. B. Rozel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks K. Condie, L. Moresi and M. Van Kranendonk for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Figure 1 Comparison of field data (and their geodynamic interpretation) and the tectonic regimes self-consistently obtained in our simulations (see Methods).

Numerical models always show some intense deformation during the first hundreds of millions of years and then reach a stagnant phase. Massive resurfacing events (purple areas) are sometimes observed after a long stability period, consistent with field data36,63 interpretations. Ga, billions of years ago.

Extended Data Table 1 Required P (GPa) and T (°C) conditions for TTG formation
Extended Data Table 2 Final global volumes (in cubic kilometres, after a billion years) for all simulations
Extended Data Table 3 Rheological properties in the viscous regime
Extended Data Table 4 Phase-change parameters for olivine and pyroxene-garnet phase systems

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rozel, A., Golabek, G., Jain, C. et al. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017). https://doi.org/10.1038/nature22042

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing