Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Remote site-selective C–H activation directed by a catalytic bifunctional template

Abstract

In chemical syntheses, the activation of carbon–hydrogen (C–H) bonds converts them directly into carbon–carbon or carbon–heteroatom bonds without requiring any prior functionalization. C–H activation can thus substantially reduce the number of steps involved in a synthesis. A single specific C–H bond in a substrate can be activated by using a ‘directing’ (usually a functional) group to obtain the desired product selectively1,2,3,4,5. The applicability of such a C–H activation reaction can be severely curtailed by the distance of the C–H bond in question from the directing group, and by the shape of the substrate, but several approaches have been developed to overcome these limitations6,7,8,9,10,11,12. In one such approach, an understanding of the distal and geometric relationships between the functional groups and C–H bonds of a substrate has been exploited to achieve meta-selective C–H activation by using a covalently attached, U-shaped template13,14,15,16,17. However, stoichiometric installation of this template has not been feasible in the absence of an appropriate functional group on which to attach it. Here we report the design of a catalytic, bifunctional nitrile template that binds a heterocyclic substrate via a reversible coordination instead of a covalent linkage. The two metal centres coordinated to this template have different roles: one reversibly anchors substrates near the catalyst, and the other cleaves remote C–H bonds. Using this strategy, we demonstrate remote, site-selective C–H olefination of heterocyclic substrates that do not have the necessary functional groups for covalently attaching templates.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Design of a cooperative bimetallic approach for remote, site-selective C–H activation.
Figure 2: Discovery of a template that enables site-selective, remote C–H activation.
Figure 3: Results of remote, site-selective C–H olefination of heterocycle-containing substrates using a catalytic template.
Figure 4: Extending the reaction principle to the site-selective C–H olefination of quinolines and other heterocycles.

Similar content being viewed by others

References

  1. Snieckus, V. Directed ortho metalation. Tertiary amide and O-carbamate directors in synthetic strategies for polysubstituted aromatics. Chem. Revc. 90, 879–933 (1990)

    Article  CAS  Google Scholar 

  2. Flemming, J. P., Berry, M. B. & Brown, J. M. Sequential ortho-lithiations; the sulfoxide group as a relay to enable meta-substitution. Org. Biomol. Chem. 6, 1215–1221 (2008)

    Article  CAS  Google Scholar 

  3. Daugulis, O., Do, H.-Q. & Shabashov, D. Palladium- and copper-catalyzed arylation of carbon-hydrogen bonds. Acc. Chem. Res. 42, 1074–1086 (2009)

    Article  CAS  Google Scholar 

  4. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010)

    Article  CAS  Google Scholar 

  5. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C-C bond formation via heteroatom-directed C-H bond activation. Chem. Rev. 110, 624–655 (2010)

    Article  CAS  Google Scholar 

  6. Breslow, R. Biomimetic control of chemical selectivity. Acc. Chem. Res. 13, 170–177 (1980)

    Article  CAS  Google Scholar 

  7. Das, S., Incarvito, C. D., Crabtree, R. H. & Brudvig, G. W. Molecular recognition in the selective oxygenation of saturated C-H bonds by a dimanganese catalyst. Science 312, 1941–1943 (2006)

    Article  CAS  ADS  Google Scholar 

  8. Martínez-Martínez, A. J., Kennedy, A. R., Mulvey, R. E. & O’Hara, C. T. Directed ortho-meta′- and meta-meta′-dimetalations: a template base approach to deprotonation. Science 346, 834–837 (2014)

    Article  ADS  Google Scholar 

  9. Phipps, R. J. & Gaunt, M. J. A meta-selective copper-catalyzed C-H bond arylation. Science 323, 1593–1597 (2009)

    Article  CAS  ADS  Google Scholar 

  10. Saidi, O. et al. Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines. J. Am. Chem. Soc. 133, 19298–19301 (2011)

    Article  CAS  Google Scholar 

  11. Hofmann, N. & Ackermann, L. Meta-selective C-H bond alkylation with secondary alkyl halides. J. Am. Chem. Soc. 135, 5877–5884 (2013)

    Article  CAS  Google Scholar 

  12. Li, J. et al. N-acyl amino acid ligands for ruthenium(II)-catalyzed meta-C–H tert-alkylation with removable auxiliaries. J. Am. Chem. Soc. 137, 13894–13901 (2015)

    Article  CAS  Google Scholar 

  13. Leow, D., Li, G., Mei, T.-S. & Yu, J.-Q. Activation of remote meta-C–H bonds assisted by an end-on template. Nature 486, 518–522 (2012)

    Article  CAS  ADS  Google Scholar 

  14. Lee, S., Lee, H. & Tan, K. L. Meta-selective C-H functionalization using a nitrile-based directing group and cleavable Si-tether. J. Am. Chem. Soc. 135, 18778–18781 (2013)

    Article  CAS  Google Scholar 

  15. Tang, R.-Y., Li, G. & Yu, J.-Q. Conformation-induced remote meta-C–H activation of amines. Nature 507, 215–220 (2014)

    Article  CAS  ADS  Google Scholar 

  16. Bera, M., Maji, A., Sahoo, S. K. & Maiti, D. Palladium(II)-catalyzed meta-C–H olefination: constructing multisubstituted arenes through homo-diolefination and sequential hetero-diolefination. Angew. Chem. Int. Ed. 54, 8515–8519 (2015)

    Article  CAS  Google Scholar 

  17. Chu, L. et al. Remote meta-C–H activation using a pyridine-based template: achieving site-selectivity via the recognition of distance and geometry. ACS Cent. Sci. 1, 394–399 (2015)

    Article  CAS  Google Scholar 

  18. Kuninobu, Y., Ida, H., Nishi, M. & Kanai, M. A meta-selective C-H borylation directed by a secondary interaction between ligand and substrate. Nat. Chem. 7, 712–717 (2015)

    Article  CAS  Google Scholar 

  19. Shibasaki, M. & Yoshikawa, N. Lanthanide complexes in multifunctional asymmetric catalysis. Chem. Rev. 102, 2187–2210 (2002)

    Article  CAS  Google Scholar 

  20. Van den Beuken, E. K. & Feringa, B. L. Bimetallic catalysis by late transition metal complexes. Tetrahedron 54, 12985–13011 (1998)

    Article  CAS  Google Scholar 

  21. Konsler, R. G., Karl, J. & Jacobsen, E. N. Cooperative asymmetric catalysis with dimeric Salen complexes. J. Am. Chem. Soc. 120, 10780–10781 (1998)

    Article  CAS  Google Scholar 

  22. Park, J. & Hong, S. Cooperative bimetallic catalysis in asymmetric transformations. Chem. Soc. Rev. 41, 6931–6943 (2012)

    Article  CAS  Google Scholar 

  23. Alvarado, R. J. et al. Structural insights into the coordination and extraction of Pb(ii) by disulfonamide ligands derived from o-phenylenediamine. Inorg. Chem. 44, 7951–7959 (2005)

    Article  CAS  Google Scholar 

  24. Cheng, P.-H., Cheng, H.-Y., Lin, C.-C. & Peng, S.-M. Oxidations of N,N′-disubstituted o-phenylenediamine in the presence of metal ions and the crystal structure of N,N′-dimethylbenzimidazolium perchlorate, pyridine-bis(o-benzosemiquinonediimine)cobalt(iii) chloride and bis(pyridine)(N,N′-bistoluene-p-sulfonyl-o-phenylenediiminato)-copper(ii). Inorg. Chim. Acta 169, 19–21 (1990)

    Article  CAS  Google Scholar 

  25. Nakao, Y., Kanyiva, K. S. & Hiyama, T. A strategy for C-H activation of pyridines: direct C-2 selective alkenylation of pyridines by nickel/Lewis acid catalysis. J. Am. Chem. Soc. 130, 2448–2449 (2008)

    Article  CAS  Google Scholar 

  26. Tsai, C.-C. et al. Bimetallic nickel aluminum mediated para-selective alkenylation of pyridine: direct observation of η21-pyridine Ni(0)-Al(III) intermediates prior to C-H bond activation. J. Am. Chem. Soc. 132, 11887–11889 (2010)

    Article  CAS  Google Scholar 

  27. Yang, Y.-F. et al. Palladium-catalyzed meta-selective C-H bond activation with a nitrile-containing template: computational study on mechanism and origins of selectivity. J. Am. Chem. Soc. 136, 344–355 (2014)

    Article  CAS  Google Scholar 

  28. Vitaku, E., Smith, D. T. & Njardarson, J. T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem. 57, 10257–10274 (2014)

    Article  CAS  Google Scholar 

  29. Taylor, R. D., MacCoss, M. & Lawson, A. D. G. Rings in drugs. J. Med. Chem. 57, 5845–5859 (2014)

    Article  CAS  Google Scholar 

  30. Stork, G. & Schultz, A. G. The total synthesis of dl-camptothecin. J. Am. Chem. Soc. 93, 4074–4075 (1971)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge The Scripps Research Institute and the United States National Institutes of Health (the National Institute of General Medical Sciences, grant no. 1R01 GM102265) for financial support. We thank the Ito Foundation for International Education Exchange (predoctoral fellowship to K.T.).

Author information

Authors and Affiliations

Authors

Contributions

Z.Z. developed the catalytic bidentate template for 3-phenylpyridine and other heterocycles. K.T. developed the non-covalent tridentate template for quinoline and other heterocycles. J.-Q.Y. conceived the concept and prepared the manuscript with feedback from Z.Z. and K.T.

Corresponding author

Correspondence to Jin-Quan Yu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data, Supplementary Tables 1-32 and Supplementary References. (PDF 39269 kb)

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Tanaka, K. & Yu, JQ. Remote site-selective C–H activation directed by a catalytic bifunctional template. Nature 543, 538–542 (2017). https://doi.org/10.1038/nature21418

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature21418

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing