Letter | Published:

Recent increase in oceanic carbon uptake driven by weaker upper-ocean overturning

Nature volume 542, pages 215218 (09 February 2017) | Download Citation

Abstract

The ocean is the largest sink for anthropogenic carbon dioxide (CO2), having absorbed roughly 40 per cent of CO2 emissions since the beginning of the industrial era1,2. Recent data show that oceanic CO2 uptake rates have been growing over the past decade3,4,5,6,7, reversing a trend of stagnant or declining carbon uptake during the 1990s8,9,10,11,12,13,14. Here we show that ocean circulation variability is the primary driver of these changes in oceanic CO2 uptake over the past several decades. We use a global inverse model to quantify the mean ocean circulation during the 1980s, 1990s and 2000s, and then estimate the impact of decadal circulation changes on the oceanic CO2 sink using a carbon cycling model. We find that during the 1990s an enhanced upper-ocean overturning circulation drove increased outgassing of natural CO2, thus weakening the global CO2 sink. This trend reversed during the 2000s as the overturning circulation weakened. Continued weakening of the upper-ocean overturning is likely to strengthen the CO2 sink in the near future by trapping natural CO2 in the deep ocean, but ultimately may limit oceanic uptake of anthropogenic CO2.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from $8.99

All prices are NET prices.

References

  1. 1.

    et al. Global ocean storage of anthropogenic carbon. Biogeosciences 10, 2169–2191 (2013)

  2. 2.

    The oceanic anthropogenic CO2 sink: storage, air-sea fluxes, and transports over the industrial era. Glob. Biogeochem. Cycles 28, 631–647 (2014)

  3. 3.

    & Global trends in surface ocean pCO2 from in situ data. Glob. Biogeochem. Cycles 27, 541–557 (2013)

  4. 4.

    , , & Recent variability of the global ocean carbon sink. Glob. Biogeochem. Cycles 28, 927–949 (2014)

  5. 5.

    , & A growing oceanic carbon uptake: results from an inversion study of surface pCO2 data. Glob. Biogeochem. Cycles 28, 335–351 (2014)

  6. 6.

    et al. Recent evidence for a strengthening CO2 sink in the Southern Ocean from carbonate system measurements in the Drake Passage (2002–2015). Geophys. Res. Lett. 42, 7623–7630 (2015)

  7. 7.

    et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224 (2015)

  8. 8.

    et al. Trends and regional distributions of land and ocean carbon sinks. Biogeosciences 7, 2351–2367 (2010)

  9. 9.

    & A variable and decreasing sink for atmospheric CO2 in the North Atlantic. J. Geophys. Res. 112, C11006 (2007)

  10. 10.

    et al. Saturation of the Southern Ocean CO2 sink due to recent climate change. Science 316, 1735–1738 (2007)

  11. 11.

    et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831–836 (2009)

  12. 12.

    , , & Convergence of atmospheric and North Atlantic carbon dioxide trends on multidecadal timescales. Nat. Geosci. 4, 606–610 (2011)

  13. 13.

    et al. Atlantic Ocean CO2 uptake reduced by weakening of the meridional overturning circulation. Nat. Geosci. 6, 146–152 (2013)

  14. 14.

    & The non-steady state oceanic CO2 signal: its importance, magnitude and a novel way to detect it. Biogeosciences 10, 2219–2228 (2013)

  15. 15.

    et al. Data-based estimates of the ocean carbon sink variability: first results of the surface ocean pCO2 mapping intercomparison (SOCOM). Biogeosciences 12, 7251–7278 (2015)

  16. 16.

    & Dynamically and observationally constrained estimates of water-mass distributions and ages in the global ocean. J. Phys. Oceanogr. 41, 2381–2401 (2011)

  17. 17.

    , , & Pathways of anthropogenic carbon subduction in the global ocean. Geophys. Res. Lett. 42, 6416–6423 (2015)

  18. 18.

    , , , & Anthropogenic CO2 uptake, transport, storage, and dynamical controls in the ocean imposed by the meridional overturning circulation: a modeling study. Glob. Biogeochem. Cycles 29, 1706–1724 (2015)

  19. 19.

    , & Toward a mechanistic understanding of the decadal trends in the Southern Ocean carbon sink. Glob. Biogeochem. Cycles 22, GB3016 (2008)

  20. 20.

    et al. Changes in the North Atlantic Oscilliation influence CO2 uptake in the North Atlantic over the past 2 decades. Glob. Biogeochem. Cycles 22, GB4027 (2008)

  21. 21.

    Estimating the Atlantic overturning at 26°N using satellite altimetry and cable measurements. Geophys. Res. Lett. 42, 3458–3464 (2015)

  22. 22.

    et al. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang. 4, 222–227 (2014)

  23. 23.

    , & Decadal variations and trends of the global ocean carbon sink. Glob. Biogeochem. Cycles 30, 1396–1417 (2016)

  24. 24.

    et al. Interannual sea–air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Biogeosciences 11, 4599–4613 (2014)

  25. 25.

    et al. Sustained growth of the Southern Ocean carbon storage in a warming climate. Geophys. Res. Lett. 42, 4516–4522 (2015)

  26. 26.

    , , , & Are anthropogenic changes in the tropical ocean carbon cycle masked by Pacific Decadal Variability? US CLIVAR Var. 13, 12–16, (2015)

  27. 27.

    et al. Response of the ocean natural carbon storage to projected twenty-first-century climate change. J. Clim. 27, 2033–2053 (2014)

  28. 28.

    et al. Timescales for detection of trends in the ocean carbon sink. Nature 530, 469–472 (2016)

  29. 29.

    , , , & Impact of Weddell Sea deep convection on natural and anthropogenic carbon in a climate model. Geophys. Res. Lett. 41, 7262–7269 (2014)

  30. 30.

    et al. The Global Ocean Data Analysis Project version 2 (GLODAPv2)—an internally consistent data product for the world ocean. Earth System Sci. Data 8, 297–323 (2016)

  31. 31.

    Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97, 7373–7382 (1992)

  32. 32.

    & Design of OCMIP-2 simulations of chlorofluorocarbons, the solubility pump and common biogeochemistry. (1998)

  33. 33.

    Atmospheric CFC-11, CFC-12, CFC-113, CCl4, and SF6 histories (1910–2014). NOAA technical report. (Carbon Dioxide Information Analysis Centre, NOAA, 2014)

  34. 34.

    & Solubilities of chlorofluorocarbons 11 and 12 in water and seawater. Deep-Sea Res. A 32, 1485–1497 (1985)

  35. 35.

    et al. in World Ocean Atlas 2009 Vol. 2 Salinity (ed. ) 1–184 (US Government Printing Office, 2010)

  36. 36.

    , , , & in World Ocean Atlas 2009 Vol. 1 Temperature (ed. ) 1–184 (US Government Printing Office, 2010)

  37. 37.

    Three-dimensional modeling of tracers in the deep Pacific Ocean, II. Radiocarbon and the circulation. J. Mar. Res. 40, 537–550 (1982)

  38. 38.

    et al. Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements. Glob. Biogeochem. Cycles 21, GB2015 (2007)

  39. 39.

    et al. Impact of circulation on export production, dissolved organic matter, and dissolved oxygen in the ocean: results from Phase II of the Ocean Carbon-cycle Model Intercomparison Project (OCMIP-2). Glob. Biogeochem. Cycles 21, GB3007 (2007)

  40. 40.

    & Optimization and sensitivity of a global biogeochemistry ocean model using combined in situ DIC, alkalinity, and phosphate data. J. Geophys. Res. 113, C08011 (2008)

  41. 41.

    , , , & Changing controls on oceanic radiocarbon: New insights on shallow-to-deep ocean exchange and anthropogenic CO2 uptake. J. Geophys. Res. 117, C10005 (2012)

  42. 42.

    , , & VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res. 34, 267–285 (1987)

  43. 43.

    & Large-scale variations in the stoichiometry of marine organic matter respiration. Nat. Geosci. 7, 890–894 (2014)

  44. 44.

    , , & Marine denitrification rates determined from a global 3-D inverse model. Biogeosciences 10, 2481–2496 (2013)

  45. 45.

    & Optimization and sensitivity study of a biogeochemistry ocean model using an implicit solver and in situ phosphate data. Glob. Biogeochem. Cycles 20, GB4009 (2006)

  46. 46.

    Carbon export fluxes in the southern ocean: results from inverse modeling and comparison with satellite-based estimates. Deep-Sea Res. II 49, 1623–1644 (2002)

  47. 47.

    On the variability of the exponent in the power law depth dependence of POC flux estimated from sediment traps. Deep-Sea Res. I 53, 1335–1343 (2006)

  48. 48.

    , & The sequestration efficiency of the biological pump. Geophys. Res. Lett. 39, L13601 (2012)

  49. 49.

    , , , & Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Glob. Biogeochem. Cycles 20, GB2015 (2006)

  50. 50.

    The biological control of chemical factors in the environment. Am. Sci. 46, 205–221 (1958)

  51. 51.

    , & Centennial-scale sea surface temperature analysis and its uncertainty. J. Clim. 27, 57–75 (2014)

  52. 52.

    et al. Extended reconstructed sea surface temperature version 4 (ersst. v4). Part I: upgrades and intercomparisons. J. Clim. 28, 911–930 (2015)

  53. 53.

    , , , & A statistical gap-filling method to interpolate global monthly surface ocean carbon dioxide data. J. Adv. Model. Earth Syst. 7, 1554–1575 (2015)

  54. 54.

    et al. Fluxengine: a flexible processing system for calculating atmosphere–ocean carbon dioxide gas fluxes and climatologies. J. Atmos. Ocean. Technol. 33, 741–756 (2016)

  55. 55.

    et al. Global surface-ocean p(CO2) and sea-air CO2 flux variability from an observation-driven ocean mixed-layer scheme. Ocean Sci. 9, 193–216 (2013)

  56. 56.

    et al. Variability of global net sea–air CO2 fluxes over the last three decades using empirical relationships. Tellus B 62, 352–368 (2010)

  57. 57.

    et al. An assessment of the Atlantic and Arctic sea-air CO2 fluxes, 1990-2009. Biogeosciences 10, 607–627 (2013)

  58. 58.

    et al. Trends in pCO2 and sea–air CO2 flux over the global open oceans for the last two decades. J. Oceanogr. 71, 637–661 (2015)

  59. 59.

    , & A novel method for diagnosing seasonal to inter-annual surface ocean carbon dynamics from bottle data using neural networks. Biogeosciences 10, 4319–4340 (2013)

  60. 60.

    Carbones: 30-year reanalysis of carbon fluxes and pools over Europe and the globe. (accessed 11 January 2017)

  61. 61.

    et al. Estimating temporal and spatial variation of ocean surface pCO2 in the North Pacific using a self-organizing map neural network technique. Biogeosciences 10, 6093–6106 (2013)

  62. 62.

    , , , & A global surface ocean fCO2 climatology based on a feed-forward neural network. J. Atmos. Ocean. Technol. 31, 1838–1849 (2014)

  63. 63.

    & Simulation and assimilation of global ocean pCO2 and air–sea CO2 fluxes using ship observations of surface ocean pCO2 in a simplified biogeochemical offline model. Tellus B 62, 821–840 (2010)

Download references

Acknowledgements

T.D. acknowledges support from a University of California Regents Junior Faculty Fellowship, and from NASA grant NNX16A122G. M.H. acknowledges support from Australian Research Council grant DP120100674. F.P. acknowledges funding from the National Science Foundation award OCE 1436992. We thank all of the scientists who collected the oceanographic tracer data used in this study.

Author information

Affiliations

  1. Department of Geography, University of California, Santa Barbara, California 93106, USA

    • Tim DeVries
  2. Earth Research Institute, University of California, Santa Barbara, California 93106, USA

    • Tim DeVries
  3. School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales 2052, Australia

    • Mark Holzer
  4. Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA

    • Mark Holzer
  5. Department of Earth System Science, University of California, Irvine, California 92697, USA

    • Francois Primeau

Authors

  1. Search for Tim DeVries in:

  2. Search for Mark Holzer in:

  3. Search for Francois Primeau in:

Contributions

All authors conceived this study. T.D. performed the model simulations and analysed the data. T.D. wrote the manuscript with input from M.H. and F.P.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Tim DeVries.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Tables

    This file contains Supplementary Tables 1-2.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature21068

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.