Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ruthenium isotopic evidence for an inner Solar System origin of the late veneer

Abstract

The excess of highly siderophile elements in the Earth’s mantle is thought to reflect the addition of primitive meteoritic material after core formation ceased1,2,3,4. This ‘late veneer’ either comprises material remaining in the terrestrial planet region after the main stages of the Earth’s accretion5,6, or derives from more distant asteroidal7 or cometary8 sources. Distinguishing between these disparate origins is important because a late veneer consisting of carbonaceous chondrite-like asteroids7 or comets8 could be the principal source of the Earth’s volatiles and water. Until now, however, a ‘genetic’ link between the late veneer and such volatile-rich materials has not been established or ruled out. Such genetic links can be determined using ruthenium (Ru) isotopes, because the Ru in the Earth’s mantle predominantly derives from the late veneer9, and because meteorites exhibit Ru isotope variations arising from the heterogeneous distribution of stellar-derived dust10,11. Although Ru isotopic data and the correlation of Ru and molybdenum (Mo) isotope anomalies in meteorites were previously used to argue that the late veneer derives from the same type of inner Solar System material as do Earth’s main building blocks6, the Ru isotopic composition of carbonaceous chondrites has not been determined sufficiently well to rule them out as a source of the late veneer. Here we show that all chondrites, including carbonaceous chondrites, have Ru isotopic compositions distinct from that of the Earth’s mantle. The Ru isotope anomalies increase from enstatite to ordinary to carbonaceous chondrites, demonstrating that material formed at greater heliocentric distance contains larger Ru isotope anomalies. Therefore, these data refute an outer Solar System origin for the late veneer and imply that the late veneer was not the primary source of volatiles and water on the Earth.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: ϵ100Ru data for chondrites, iron meteorites and terrestrial chromitites.
Figure 2: The magnitude of ϵ100Ru anomalies increases with increasing distance (in astronomical units, au) from the Sun.

References

  1. 1

    Kimura, K., Lewis, R. S. & Anders, E. Distribution of gold and rhenium between nickel-iron and silicate melts—implications for abundance of siderophile elements on Earth and Moon. Geochim. Cosmochim. Acta 38, 683–701 (1974)

    ADS  CAS  Article  Google Scholar 

  2. 2

    Chou, C. L. Fractionation of siderophile elements in the Earth’s upper mantle. Proc. Lunar Planet. Sci. Conf. IX, 219–230 (1978)

    ADS  Google Scholar 

  3. 3

    Brenan, J. M. & McDonough, W. F. Core formation and metal-silicate fractionation of osmium and iridium from gold. Nat. Geosci. 2, 798–801 (2009)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem Erde-Geochem. 69, 101–125 (2009)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Dauphas, N., Davis, A. M., Marty, B. & Reisberg, L. The cosmic molybdenum-ruthenium isotope correlation. Earth Planet. Sci. Lett. 226, 465–475 (2004)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Wang, Z. & Becker, H. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499, 328–331 (2013)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Albarède, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009)

    ADS  Article  Google Scholar 

  9. 9

    Becker, H. et al. Highly siderophile element composition of the Earth’s primitive upper mantle: Constraints from new data on peridotite massifs and xenoliths. Geochim. Cosmochim. Acta 70, 4528–4550 (2006)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Chen, J. H., Papanastassiou, D. A. & Wasserburg, G. J. Ruthenium endemic isotope effects in chondrites and differentiated meteorites. Geochim. Cosmochim. Acta 74, 3851–3862 (2010)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Fischer-Gödde, M., Burkhardt, C., Kruijer, T. S. & Kleine, T. Ru isotope heterogeneity in the solar protoplanetary disk. Geochim. Cosmochim. Acta 168, 151–171 (2015)

    ADS  Article  Google Scholar 

  12. 12

    Canup, R. M. Forming a Moon with an Earth-like Composition via a giant impact. Science 338, 1052–1055 (2012)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Cuk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Walker, R. J. et al. In search of late-stage planetary building blocks. Chem. Geol. 411, 125–142 (2015)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Morbidelli, A. et al. Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000)

    ADS  CAS  Article  Google Scholar 

  16. 16

    Ballhaus, C. et al. The U/Pb ratio of the Earth’s mantle: a signature of late volatile addition. Earth Planet. Sci. Lett. 362, 237–245 (2013)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Wood, B. J. & Halliday, A. N. The lead isotopic age of the Earth can be explained by core formation alone. Nature 465, 767–770 (2010)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Rubie, D. C. et al. Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015)

    ADS  CAS  Article  Google Scholar 

  19. 19

    Meisel, T., Walker, R. J. & Morgan, J. W. The osmium isotopic composition of the Earth’s primitive upper mantle. Nature 383, 517–520 (1996)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Fischer-Gödde, M. & Becker, H. Osmium isotope and highly siderophile element constraints on ages and nature of meteoritic components in ancient lunar impact rocks. Geochim. Cosmochim. Acta 77, 135–156 (2012)

    ADS  Article  Google Scholar 

  21. 21

    König, S., Lorand, J.-P., Luguet, A. & Graham Pearson, D. A non-primitive origin of near-chondritic S–Se–Te ratios in mantle peridotites; implications for the Earth’s late accretionary history. Earth Planet. Sci. Lett. 385, 110–121 (2014)

    ADS  Article  Google Scholar 

  22. 22

    Brandon, A. D., Humayun, M., Puchtel, I. S., Leya, I. & Zolensky, M. Osmium isotope evidence for an s-process carrier in primitive chondrites. Science 309, 1233–1236 (2005)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Yokoyama, T. et al. Osmium isotope evidence for uniform distribution of s- and r-process components in the early solar system. Earth Planet. Sci. Lett. 259, 567–580 (2007)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Hiroi, T., Zolensky, M. E. & Pieters, C. M. The Tagish Lake meteorite: a possible sample from a D-type asteroid. Science 293, 2234–2236 (2001)

    ADS  CAS  Article  Google Scholar 

  25. 25

    Brandon, A. D., Humayun, M., Puchtel, I. S. & Zolensky, M. E. Re-Os isotopic systematics and platinum group element composition of the Tagish Lake carbonaceous chondrite. Geochim. Cosmochim. Acta 69, 1619–1631 (2005)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Rubie, D. C. et al. Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation. Science 353, 1141–1144 (2016)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Dauphas, N. et al. Calcium-48 isotopic anomalies in bulk chondrites and achondrites: evidence for a uniform isotopic reservoir in the inner protoplanetary disk. Earth Planet. Sci. Lett. 407, 96–108 (2014)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Alexander, C. M. O. D. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313–314, 56–66 (2012)

    ADS  Article  Google Scholar 

  30. 30

    O’Brien, D. P., Walsh, K. J., Morbidelli, A., Raymond, S. N. & Mandell, A. M. Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239, 74–84 (2014)

    ADS  Article  Google Scholar 

  31. 31

    Walsh, K. J., Morbidelli, A., Raymond, S. N., O’Brien, D. P. & Mandell, A. M. A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011)

    ADS  CAS  Article  Google Scholar 

  32. 32

    Savina, M. R. et al. Extinct technetium in silicon carbide stardust grains: implications for stellar nucleosynthesis. Science 303, 649–652 (2004)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Bisterzo, S., Gallino, R., Straniero, O., Cristallo, S. & Käppeler, F. The s-process in low-metallicity stars—II. Interpretation of high-resolution spectroscopic observations with asymptotic giant branch models. Mon. Not. R. Astron. Soc. 418, 284–319 (2011)

    ADS  CAS  Article  Google Scholar 

  34. 34

    Kruijer, T. S. et al. Neutron capture on Pt isotopes in iron meteorites and the Hf-W chronology of core formation in planetesimals. Earth Planet. Sci. Lett. 361, 162–172 (2013)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the Meteorite Working Group at NASA, A. Bischoff and A. Greshake for providing the meteorite samples for this study, and K. Bermingham and B. O’Driscoll for providing the Shetland chromitite sample. We thank U. Heitmann, T. Kruijer and C. Proksche for their assistance, and A. Brandon, C. Brennecka and D. Papanastassiou for comments on the paper. This work was supported by the Deutsche Forschungsgemeinschaft (SFB-TRR 170, subproject B3-1). This is TRR 170 publication no. 11.

Author information

Affiliations

Authors

Contributions

M.F.-G. prepared the samples for Ru isotope analyses and conducted the measurements. Both M.F.-G. and T.K. were involved in the interpretation of the data and the writing of the manuscript.

Corresponding authors

Correspondence to Mario Fischer-Gödde or Thorsten Kleine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information Nature thanks A. Brandon and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data figures and tables

Extended Data Figure 1 Ruthenium isotope plots for chondrites and iron meteorites.

a, ϵ100Ru–ϵ96Ru; b, ϵ100Ru–ϵ102Ru. See the source data for Extended Data Fig. 1. Lines represent mixing lines between terrestrial Ru and an s-process component as defined by Ru isotope data for presolar SiC32 (dashed line), calculated s-process yields33 (dotted line) and corresponding calculated residuals for rapid neutron capture process (r-process) of stellar nucleosynthesis (dashed-dotted line). Uncertainties of individual data points reflect the external uncertainty of the method (2 s.d., for samples measured n < 4 times) or 95% confidence intervals (calculated as two-sided Student’s t-values, for samples measured n ≥ 4 times). Uncertainties for group averages of ordinary and enstatite chondrites are 95% confidence intervals, and uncertainties for non-magmatic IAB iron meteorites include propagated errors from secondary neutron-capture correction as given in Extended Data Table 2. Data for other iron meteorites are from ref. 11.

Source data

Extended Data Table 1 Ruthenium isotope data of chondrites and terrestrial chromitites
Extended Data Table 2 Measured Ru and Pt isotope data and neutron-capture-corrected ϵiRu values for non-magmatic iron meteorites (group IAB)

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fischer-Gödde, M., Kleine, T. Ruthenium isotopic evidence for an inner Solar System origin of the late veneer. Nature 541, 525–527 (2017). https://doi.org/10.1038/nature21045

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links