Letter | Published:

Breeding site sampling across the Arctic by individual males of a polygynous shorebird

Nature volume 541, pages 528531 (26 January 2017) | Download Citation


Males of many polygynous species compete for access to fertile females without providing them with resources other than sperm and without investing in care for the offspring (male dominance polygyny)1,2,3,4. In such systems, local competition for access to females is intense and typically only a few males obtain matings, leading to strong sexual selection2,4,5. Sampling multiple breeding areas could then provide a mechanism for males to increase their chances to reproduce. However, little is known about such sampling behaviour and about the spatial scale at which males compete6,7,8. Here we show that most males of a migratory, polygynous shorebird, the pectoral sandpiper (Calidris melanotos)9,10, that arrived at a known breeding location in northern Alaska9 subsequently moved through a considerable part of the entire species’ breeding range (up to 13,045 km in a four-week period), sampling as many as 23 additional potential breeding sites. Our data suggest that males do not have a final breeding destination after migration from their wintering quarters, but make nomadic movements that are probably not a consequence of breeding failure. Tenure, the duration of stay at a site, correlated strongly with the number of breeding females at the site, suggesting that decisions to leave are dependent on local mating opportunities. Nomadic movements may allow males to display and sire offspring at multiple sites within a single breeding season. Sexual selection may then favour high-performance males that are able to reduce sleep to compete locally9 and to fly long distances between breeding sites, leading to a population with unrestricted interbreeding and without local adaptation and speciation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    in Natural Selection and Social Behavior (eds & ) 138–169 (Chiron Press, 1981)

  2. 2.

    & Ecology, sexual selection, and the evolution of mating systems. Science 197, 215–223 (1977)

  3. 3.

    Lekking in birds and mammals: behavioral and evolutionary issues. Adv. Stud. Behav . 20, 201–291 (1991)

  4. 4.

    & Leks (Princeton Univ. Press, 1995)

  5. 5.

    & Hotshots, hotspots, and female preference in the organization of lek mating systems. Am. Nat. 131, 203–219 (1988)

  6. 6.

    , , & Lek fidelity and movement among leks by male greater sage-grouse Centrocercus urophasianus: a capture-mark-recapture approach. Ibis 156, 729–740 (2014)

  7. 7.

    , , & Lekking without a paradox in the buff-breasted sandpiper. Am. Nat. 149, 1051–1070 (1997)

  8. 8.

    & Ephemeral lekking behavior in the buff-breasted sandpiper, Tryngites subruficollis. Behav. Ecol. 8, 268–278 (1997)

  9. 9.

    et al. Adaptive sleep loss in polygynous pectoral sandpipers. Science 337, 1654–1658 (2012)

  10. 10.

    , , & Birds of North America Online (ed. ) Cornell Lab of Ornithology, (2013)

  11. 11.

    & Pectoral sandpipers in Europe: vagrancy patterns and the influx of 2003. Br. Birds 97, 638–646 (2004)

  12. 12.

    , , & Dispersion of displaying male sage grouse. II. The role of female dispersion. Behav. Ecol. Sociobiol. 24, 15–24 (1989)

  13. 13.

    & Conservative and opportunistic settlement strategies in Arctic-breeding shorebirds. Auk 132, 212–234 (2015)

  14. 14.

    The Migration Ecology of Birds (Academic Press, 2010)

  15. 15.

    , , & The functional morphology of male courtship displays in the pectoral sandpiper (Calidris melanotos). Auk 132, 65–77 (2015)

  16. 16.

    The social implications of traditional use of lek sites in the ruff Philomachus pugnax. Behav. Ecol. 8, 211–217 (1997)

  17. 17.

    , , , & Inter-annual variation in the breeding chronology of arctic shorebirds: effects of weather, snow melt and predators. J. Avian Biol. 41, 292–304 (2010)

  18. 18.

    , & Predator-mediated interactions between lemmings and shorebirds: a test of the alternative prey hypothesis. Auk 131, 619–628 (2014)

  19. 19.

    & in Handbook of the Birds of the World, Vol. 3, Hoatzin to Auks (eds , & ) 489–545 (Lynx Edicions, 1996)

  20. 20.

    Sexual selection, social competition, and speciation. Q. Rev. Biol. 58, 155–183 (1983)

  21. 21.

    , , & Male traits, mating tactics and reproductive success in the buff-breasted sandpiper, Tryngites subruficollis. Anim. Behav . 56, 419–432 (1998)

  22. 22.

    , , , & Habitat selection by foraging macaroni penguins correlates with hematocrit, an index of aerobic condition. Mar. Ecol. Prog. Ser. 530, 163–176 (2015)

  23. 23.

    , & Preservation of avian blood and tissue samples for DNA analysis. Can. J. Zool. 69, 82–90 (1991)

  24. 24.

    et al. Assessing the development of shorebird eggs using the flotation method: species-specific nd generalized regression models. Condor 109, 32–47 (2007)

  25. 25.

    , , & A density-based algorithm for discovering clusters in large spatial databases with noise. In Proc. 2nd International Conference on Knowledge Discovery and Data Mining (eds , & ) (AAAI press, 1996)

  26. 26.

    dbscan: density based clustering of applications with noise (DBSCAN) and related algorithms. R package version 0.9-4 (2015)

  27. 27.

    crawl: fit continuous-time correlated random walk models to animal movement data. R package version 1.5 (2015)

  28. 28.

    , , & Continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215 (2008)

  29. 29.

    , & MODIS/Terra Snow Cover Daily L3 Global 500m Grid V005 (25.05.2012 through 7.06.2012 and 25.05.2014 through 02.08.2014) Boulder, Colorado USA: National Snow and Ice Data Center. Digital media. (2006)

  30. 30.

    , & Plasma steroid hormones in two Arctic-breeding shorebirds: monogamy versus polygyny. Gen. Comp. Endocrinol. 147, 133–140 (2006)

  31. 31.

    & Eleven polymorphic microsatellite markers for paternity analysis in the pectoral sandpiper, Calidris melanotos. Mol. Ecol. Notes 7, 658–660 (2007)

  32. 32.

    et al. Avian Clock gene polymorphism: evidence for a latitudinal cline in allele frequencies. Mol. Ecol. 16, 4867–4880 (2007)

  33. 33.

    , & Characterization of polymorphic microsatellite DNA markers in the ruff (Philomachus pugnax). Mol. Ecol. Notes 2, 276–277 (2002)

  34. 34.

    , , , & Isolation of polymorphic microsatellite loci from Eurasian woodcock (Scolopax rusticola) and their cross-utility in related species. Mol. Ecol. Notes 7, 130–132 (2007)

  35. 35.

    , & Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol . 16, 1099–1106 (2007)

  36. 36.

    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing) (2016)

  37. 37.

    , , & Fitting linear mixed-effects models using lme4. Stat. J. Stat. Softw. 67, 1–48 (2015)

  38. 38.

    , & Multiple Comparisons using R (CRC Press, 2010)

  39. 39.

    & Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015)

  40. 40.

    & The analysis of spatial association by use of distance statistics. Geogr. Anal . 24, 189–206 (1992)

  41. 41.

    , , , & Phenological advancement in Artic bird species: relative importance of snow melt and ecological factors. Polar Biol. 37, 1309–1320 (2014)

  42. 42.

    Numbers, breeding schedule, and territoriality in pectoral sandpipers of northern Alaska. Condor 61, 233–264 (1959)

  43. 43.

    & On the measurement of natural and sexual selection: applications. Evolution 38, 720–734 (1984)

Download references


We thank R. Barth, J. Conklin, W. Forstmeier, A. Jacot, K. Kapetanopoulos, S. Kuhn, L. Langlois, P. Loës, C. Muck, A. Mutzel, M. Oltrogge, E. Penning, H. Schielzeth, X. Schleuning, S. Steiger, K. Teltscher, K. Temnow, A. Türk, D. Werner, A. Wittenzellner and L. Zimmer for help in the field, S. Kuhn and K. Teltscher for genotyping, and W. Goymann, I. Schwabl and M. Trappschuh for hormone analyses. We thank P. Mombaerts for photos and for encouraging us to conduct the tracking study on a large scale, J. Conklin for discussion, W. Forstmeier for comments on the manuscript, and E. Schlicht for discussion, literature search, and comments on the manuscript. We thank R. Lanctot from USFWS in Anchorage and the Barrow Arctic Science Consortium and UMIAQ Barrow Science Support for logistical support. This work was funded by the Max Planck Society.

Author information


  1. Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard Gwinner Str, 82319 Seewiesen, Germany

    • Bart Kempenaers
    •  & Mihai Valcu


  1. Search for Bart Kempenaers in:

  2. Search for Mihai Valcu in:


B.K. conceived the study; B.K. and M.V. collected the data and developed the methods; M.V. analysed the data with input from B.K.; B.K. wrote the paper with input from M.V.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Bart Kempenaers.

Reviewer Information: Nature thanks J. Gill, L. Oring and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Extended data

Supplementary information

Zip files

  1. 1.

    Supplementary Information

    This file contains maps of tracks flown and areas visited for each individual male pectoral sandpiper captured in Barrow, Alaska, at the beginning of the breeding season in 2014 (N = 60) and 2012 (N = 60). Staging areas are shown as minimum convex polygons scaled with a factor of 15% (referenced to the map scale: lower right corner) to increase visibility. Only staging areas within the suitable breeding habitat (blue area) are shown. Darker blue: known breeding range of the species. Black dots: raw ARGOS locations; red lines: predicted track of the individual. Below each map the following information is provided: ID, a combination of individual identity and year; Overall tenure, the sum of the tenures at each residency area; Total time recorded, number of days between the first recorded signal in the first residency area (Barrow) and the last recorded signal in the last visited area (excluding the last area when tenure cannot be estimated due to the loss of the satellite tag); Total distance, sum of the distances flown between each visited area. For individuals that were followed until they left the breeding area, the total distance covered is marked as complete.


  1. 1.

    Map showing the movements of male pectoral sandpipers during the breeding season

    Birds were caught in Barrow, Alaska in 2012 (N = 60, red) and in 2014 (N = 60, blue). The current residency areas are shown as coloured rhombi; they disappear when the bird moves on or when the satellite transmitter stops sending data. Pale green area: suitable breeding habitat of the pectoral sandpiper; dark green area: known breeding range of the species (see Extended Data Fig. 1 for references). Map projection: Polar Lambert azimuthal equal-area with longitude origin 156.65° W (Barrow). Note the running date and time, and the scale bar on the bottom right. In 2014, blizzard conditions (frozen tundra covered with fresh snow) in late May caused most males to leave Barrow and fly to the SW; only one male later returned to the study site for some time.

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.