BinAB is a naturally occurring paracrystalline larvicide distributed worldwide to combat the devastating diseases borne by mosquitoes. These crystals are composed of homologous molecules, BinA and BinB, which play distinct roles in the multi-step intoxication process, transforming from harmless, robust crystals, to soluble protoxin heterodimers, to internalized mature toxin, and finally to toxic oligomeric pores. The small size of the crystals—50 unit cells per edge, on average—has impeded structural characterization by conventional means. Here we report the structure of Lysinibacillus sphaericus BinAB solved de novo by serial-femtosecond crystallography at an X-ray free-electron laser. The structure reveals tyrosine- and carboxylate-mediated contacts acting as pH switches to release soluble protoxin in the alkaline larval midgut. An enormous heterodimeric interface appears to be responsible for anchoring BinA to receptor-bound BinB for co-internalization. Remarkably, this interface is largely composed of propeptides, suggesting that proteolytic maturation would trigger dissociation of the heterodimer and progression to pore formation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


Primary accessions

Data deposits

Atomic coordinates and structure factors have been deposited in the Protein Data Bank under accession codes 5FOY (pH 7 structure), 5FOZ (pH 10 structure) and 5G37 (pH 5 structure).


  1. 1.

    et al. A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139, 1268–1278 (2009)

  2. 2.

    , & Combining pest control and resistance management: synergy of engineered insects with Bt crops. J. Econ. Entomol. 102, 717–732 (2009)

  3. 3.

    , & Overview of the basic biology of Bacillus thuringiensis with emphasis on genetic engineering of bacterial larvicides for mosquito control. Open Toxinology J. 3, 83–100 (2010)

  4. 4.

    et al. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 331, 1074–1077 (2011)

  5. 5.

    & Large-scale use of mosquito larval source management for malaria control in Africa: a cost analysis. Malar. J. 10, 338 (2011)

  6. 6.

    , , & The receptor of Bacillus sphaericus binary toxin in Culex pipiens (Diptera: Culicidae) midgut: molecular cloning and expression. Insect Biochem. Mol. Biol. 31, 981–990 (2001)

  7. 7.

    et al. Genetic determinants of host ranges of Bacillus sphaericus mosquito larvicidal toxins. J. Bacteriol. 175, 510–518 (1993)

  8. 8.

    et al. Crystal structure of BinB: a receptor binding component of the binary toxin from Lysinibacillus sphaericus. Proteins 82, 2703–2712 (2014)

  9. 9.

    et al. Bacillus sphaericus binary toxin elicits host cell autophagy as a response to intoxication. PLoS One 6, e14682 (2011)

  10. 10.

    et al. The Coherent X-ray Imaging instrument at the Linac coherent light source. J. Synchrotron Radiat. 22, 514–519 (2015)

  11. 11.

    et al. SEM imaging of liquid jets. Micron 40, 507–509 (2009)

  12. 12.

    et al. Nanoflow electrospinning serial femtosecond crystallography. Acta Crystallogr. D Biol. Crystallogr. 68, 1584–1587 (2012)

  13. 13.

    et al. Accurate macromolecular structures using minimal measurements from X-ray free-electron lasers. Nat. Methods 11, 545–548 (2014)

  14. 14.

    et al. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals. eLife 4, 05421 (2015)

  15. 15.

    & Proteolysis in the gut of mosquito larvae results in further activation of the Bacillus sphaericus toxin. Appl. Environ. Microbiol. 53, 1333–1337 (1987)

  16. 16.

    , & Electrophysiological effects of Bacillus sphaericus binary toxin on cultured mosquito cells. J. Invertebr. Pathol. 69, 197–204 (1997)

  17. 17.

    , , , & The identification and structure of the membrane-spanning domain of the Clostridium septicum alpha toxin. J. Biol. Chem. 279, 14315–14322 (2004)

  18. 18.

    et al. Molecular assembly of the aerolysin pore reveals a swirling membrane-insertion mechanism. Nat. Chem. Biol. 9, 623–629 (2013)

  19. 19.

    et al. Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proc. Natl Acad. Sci. USA 108, 17314–17319 (2011)

  20. 20.

    et al. Permeabilization of model lipid membranes by Bacillus sphaericus mosquitocidal binary toxin and its individual components. J. Membr. Biol. 184, 171–183 (2001)

  21. 21.

    , & Discriminating between homodimeric and monomeric proteins in the crystalline state. Proteins 41, 47–57 (2000)

  22. 22.

    & Shape complementarity at protein/protein interfaces. J. Mol. Biol. 234, 946–950 (1993)

  23. 23.

    , & Binding of purified Bacillus sphaericus binary toxin and its deletion derivatives to Culex quinquefasciatus gut: elucidation of functional binding domains. J. Gen. Microbiol. 138, 1515–1526 (1992)

  24. 24.

    The independent distribution of amino acid near neighbor pairs into polypeptides. Biochem. Biophys. Res. Commun. 78, 1018–1024 (1977)

  25. 25.

    et al. Structural basis for the enhancement of virulence by viral spindles and their in vivo crystallization. Proc. Natl Acad. Sci. USA 112, 3973–3978 (2015). 10.1073/pnas.1418798112

  26. 26.

    et al. De novo protein crystal structure determination from X-ray free-electron laser data. Nature 505, 244–247 (2014)

  27. 27.

    et al. An isomorphous replacement method for efficient de novo phasing for serial femtosecond crystallography. Sci. Rep. 5, 14017 (2015)

  28. 28.

    et al. Redox-coupled proton transfer mechanism in nitrite reductase revealed by femtosecond crystallography. Proc. Natl Acad. Sci. USA 113, 2928–2933 (2016)

  29. 29.

    et al. Sugar-binding sites of the HA1 subcomponent of Clostridium botulinum type C progenitor toxin. J. Mol. Biol. 376, 854–867 (2008)

  30. 30.

    , , , & Structural analysis of the Laetiporus sulphureus hemolytic pore-forming lectin in complex with sugars. J. Biol. Chem. 280, 17251–17259 (2005)

  31. 31.

    , , & Optimization of Cry3A yields in Bacillus thuringiensis by use of sporulation-dependent promoters in combination with the STAB-SD mRNA sequence. Appl. Environ. Microbiol. 64, 3932–3938 (1998)

  32. 32.

    et al. Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam. Proc. Natl Acad. Sci. USA 111, 12769–12774 (2014)

  33. 33.

    et al. Recombinant larvicidal bacteria with markedly improved efficacy against culex vectors of West Nile virus. Am. J. Trop. Med. Hyg. 72, 732–738 (2005)

  34. 34.

    , , & Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression. Appl. Environ. Microbiol. 56, 340–344 (1990)

  35. 35.

    , & Effect of promoters and plasmid copy number on Cyt1A synthesis and crystal assembly in Bacillus thuringiensis. Curr. Microbiol. 72, 33–40 (2016)

  36. 36.

    & A 20-kilodalton protein preserves cell viability and promotes CytA crystal formation during sporulation in Bacillus thuringiensis. J. Bacteriol. 175, 5276–5280 (1993)

  37. 37.

    , & New methods to prepare iodinated derivatives by vaporizing iodine labelling (VIL) and hydrogen peroxide VIL (HYPER-VIL). Acta Crystallogr. D Biol. Crystallogr. 62, 280–289 (2006)

  38. 38.

    , & Injector for scattering measurements on fully solvated biospecies. Rev. Sci. Instrum. 83, 035108 (2012)

  39. 39.

    , , & New Python-based methods for data processing. Acta Crystallogr. D Biol. Crystallogr. 69, 1274–1282 (2013)

  40. 40.

    A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008)

  41. 41.

    et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010)

  42. 42.

    , , & Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protocols 3, 1171–1179 (2008)

  43. 43.

    et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011)

  44. 44.

    SOLVE and RESOLVE: automated structure solution and density modification. Methods Enzymol. 374, 22–37 (2003)

  45. 45.

    et al. Phaser crystallographic software. J. Appl. Cryst. 40, 658–674 (2007)

  46. 46.

    & Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004)

  47. 47.

    et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER-TNT. Acta Crystallogr. D Biol. Crystallogr. 60, 2210–2221 (2004)

  48. 48.

    & Improved estimation of structure-factor difference amplitudes from poorly accurate data. Acta Crystallogr. A 53, 564–575 (1997)

  49. 49.

    Version 1.2 of the crystallography and NMR system. Nat. Protocols 2, 2728–2733 (2007)

  50. 50.

    et al. Shoot-and-Trap: use of specific x-ray damage to study structural protein dynamics by temperature-controlled cryo-crystallography. Proc. Natl Acad. Sci. USA 105, 11742–11747 (2008)

  51. 51.

    , , & PROPKA3: Consistent treatment of internal and surface residues in empirical pKa predictions. J. Chem. Theory Comput. 7, 525–537 (2011)

  52. 52.

    , , & PDB2PQR: an automated pipeline for the setup of Poisson-Boltzmann electrostatics calculations. Nucleic Acids Res. 32, W665–W667 (2004)

  53. 53.

    The PyMOL Molecular Graphics System, Version 1.8 Schrödinger, LLC

  54. 54.

    , & RADDOSE-3D : time- and space-resolved modelling of dose in macromolecular crystallography. J. Appl. Cryst. 46, 1225–1230 (2013)

  55. 55.

    Absorption of 20-eV to 50,000-eV Electron Beams in Air and Plastic. Radiat. Res. 38, 7–33 (1969)

  56. 56.

    , , & Identification of amino acids required for receptor binding and toxicity of the Bacillus sphaericus binary toxin. FEMS Microbiol. Lett. 303, 84–91 (2010)

  57. 57.

    et al. Structural and biophysical characterization of Bacillus thuringiensis insecticidal proteins Cry34Ab1 and Cry35Ab1. PLoS One 9, e112555 (2014)

  58. 58.

    et al. Structures of lysenin reveal a shared evolutionary origin for pore-forming proteins and its mode of sphingomyelin recognition. Structure 20, 1498–1507 (2012)

  59. 59.

    , , , & Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009)

  60. 60.

    , & Electrostatic complementarity at protein/protein interfaces. J. Mol. Biol. 268, 570–584 (1997)

Download references


We acknowledge the help of the following people during data collection: S. Lee, J. Koralek, R. Shoeman, S. Botha, B. Doak and O. Zeldin. We thank A. Volveda for advice regarding sequence-wise Fourier difference map integration; J. Brooks-Bartlett and E. Garman for help with dose calculations; and M. Weik for discussions and continuing support. We thank the HCIA program of HHMI, the W.M. Keck Foundation (grant 2843398), the NIH (grant AG-029430), National Science Foundation (grant MCB 0958111) and DOE (DE-FC02-02ER63421) (to D.S.E.), the France Alzheimer Foundation (FA-AAP-2013-65-101349) and the Agence Nationale de la Recherche (ANR-12-BS07-0008-03) (to J.-P.C.), NIH grants GM095887 and GM102520 for data-processing methods (to N.K.S.), and NIH grant AI45817 (to B.A.F.). Support by the CNRS (PEPS-SASLELX-2013, PEPS-SASLELX-2014) funded travel to LCLS. Use of the LCLS at SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. The CXI instrument was funded by the Linac Coherent Light Source Ultrafast Science Instruments project, itself funded by the DOE Office of Basic Energy Sciences. Parts of the sample injector used at LCLS for this research were funded by the National Institutes of Health, P41GM103393, formerly P41RR001209.

Author information

Author notes

    • Jacques-Philippe Colletier
    • , Michael R. Sawaya
    •  & Mari Gingery

    These authors contributed equally to this work.


  1. Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France

    • Jacques-Philippe Colletier
    •  & Nicolas Coquelle
  2. UCLA-DOE Institute for Genomics and Proteomics, Department of Biological Chemistry, University of California, Los Angeles, California 90095-1570, USA

    • Michael R. Sawaya
    • , Mari Gingery
    • , Jose A. Rodriguez
    • , Duilio Cascio
    •  & David S. Eisenberg
  3. Howard Hughes Medical Institute, University of California, Los Angeles, California 90095-1570, USA

    • Michael R. Sawaya
    •  & David S. Eisenberg
  4. Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • Aaron S. Brewster
    • , Tara Michels-Clark
    •  & Nicholas K. Sauter
  5. Department of Entomology and Graduate Program in Cell, Molecular and Developmental Biology, University of California, Riverside, California 92521, USA

    • Robert H. Hice
    • , Hyun-Woo Park
    • , Dennis K. Bideshi
    •  & Brian A. Federici
  6. Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA

    • Sébastien Boutet
    • , Garth J. Williams
    • , Marc Messerschmidt
    • , Daniel P. DePonte
    • , Raymond G. Sierra
    • , Hartawan Laksmono
    • , Jason E. Koglin
    •  & Mark S. Hunter
  7. Department of Biological Sciences, California Baptist University, Riverside, California 92504, USA

    • Hyun-Woo Park
    •  & Dennis K. Bideshi
  8. Molecular and Cellular Physiology, and Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA

    • Monarin Uervirojnangkoorn
    •  & Axel T. Brunger


  1. Search for Jacques-Philippe Colletier in:

  2. Search for Michael R. Sawaya in:

  3. Search for Mari Gingery in:

  4. Search for Jose A. Rodriguez in:

  5. Search for Duilio Cascio in:

  6. Search for Aaron S. Brewster in:

  7. Search for Tara Michels-Clark in:

  8. Search for Robert H. Hice in:

  9. Search for Nicolas Coquelle in:

  10. Search for Sébastien Boutet in:

  11. Search for Garth J. Williams in:

  12. Search for Marc Messerschmidt in:

  13. Search for Daniel P. DePonte in:

  14. Search for Raymond G. Sierra in:

  15. Search for Hartawan Laksmono in:

  16. Search for Jason E. Koglin in:

  17. Search for Mark S. Hunter in:

  18. Search for Hyun-Woo Park in:

  19. Search for Monarin Uervirojnangkoorn in:

  20. Search for Dennis K. Bideshi in:

  21. Search for Axel T. Brunger in:

  22. Search for Brian A. Federici in:

  23. Search for Nicholas K. Sauter in:

  24. Search for David S. Eisenberg in:


J.-P.C., M.R.S., M.G., J.A.R., D.C., B.A.F. and D.S.E designed and coordinated the project. M.G. carried out the in vivo production of BinAB nano-crystals. H.-W.P., D.K.B. and B.A.F. engineered bacterial strains to produce enlarged BinAB crystals. R.H.H. and H.-W.P. performed toxicity assays. R.H.H. designed the mutagenesis protocol. D.K.B. performed crystal solubilization assays. M.R.S. performed heavy atom derivatizations. J.-P.C., M.R.S., J.A.R., D.C., A.S.B., T.M.-C., S.B., G.J.W., M.M., D.P.D., R.G.S., H.L., J.E.K., M.S.H., N.C., M.U. and N.K.S. acquired and processed data. J.-P.C. and M.R.S carried out the MIRAS and MR phasing, and built and refined the atomic models. R.G.S. and H.L. developed the MESH-on-a-stick injector. J.-P.C., M.R.S., and D.S.E prepared the manuscript with input from M.G., J.A.R., D.C., A.S.B., T.M.-C., R.G.S., M.S.H., A.T.B., B.A.F., and N.K.S.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Jacques-Philippe Colletier or David S. Eisenberg.

Reviewer Information Nature thanks C. Berry, H. Chapman and P. Wang for their contribution to the peer review of this work.

Extended data

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains a Supplementary Discussion and additional references.

  2. 2.

    Supplementary Tables

    This file contains Supplementary Tables 1-14.

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing