This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Structure of native glycolipoprotein filaments in honeybee royal jelly
Nature Communications Open Access 08 December 2020
-
pH-dependent stability of honey bee (Apis mellifera) major royal jelly proteins
Scientific Reports Open Access 21 June 2019
-
Improving genetic transformation rates in honeybees
Scientific Reports Open Access 08 November 2018
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout


References
Kamakura, M. Royalactin induces queen differentiation in honeybees. Nature 473, 478–483 (2011)
Von Rhein, W. Über die Entstehung des weiblichen Dimorphismus im Bienenstaate. Wilhelm Roux’. Arch. Entwickl. Mech. Org. 129, 601–665 (1933)
Asencot, M. & Lensky, Y. The effect of sugars and juvenile hormone on the differentiation of the female honeybee larvae (Apis mellifera L.) to queens. Life Sci. 18, 693–699 (1976)
Rembold, H. & Hanser, G. Über den Weiselzellenfuttersaft der Honigbiene, VIII. Nachweis des determinierenden Prinzips im Futtersaft der Königinnenlarven. Hoppe-Seyler’s Z. Physiol. Chem. 339, 251–254 (1964)
Rembold, H., Lackner, B. & Geistbeck, I. The chemical basis of honeybee, Apis mellifera, caste formation. Partial purification of queen bee determinator from royal jelly. J. Insect Physiol. 20, 307–314 (1974)
Rembold, H. & Lackner, B. Rearing of honeybee larvae in vitro: effect of yeast extract on queen differentiation. J. Apic. Res. 20, 165–171 (1981)
Kaftanoglu, O., Linksvayer, T. A. & Page, R. E. Rearing honey bees, Apis mellifera, in vitro 1: effects of sugar concentrations on survival and development. J. Insect Sci. 11, 96 (2011)
Spannhoff, A. et al. Histone deacetylase inhibitor activity in royal jelly might facilitate caste switching in bees. EMBO Rep. 12, 238–243 (2011)
Kucharski, R., Maleszka, J., Foret, S. & Maleszka, R. Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 1827–1830 (2008)
Wheeler, D. E., Buck, N. & Evans, J. D. Expression of insulin pathway genes during the period of caste determination in the honey bee, Apis mellifera. Insect Mol. Biol. 15, 597–602 (2006)
Patel, A. et al. The making of a queen: TOR pathway is a key player in diphenic caste development. PLoS One 2, e509 (2007)
Kucharski, R., Foret, S. & Maleszka, R. EGFR gene methylation is not involved in Royalactin controlled phenotypic polymorphism in honey bees. Sci. Rep. 5, 14070 (2015)
Schmitzová, J. et al. A family of major royal jelly proteins of the honeybee Apis mellifera L. Cell. Mol. Life Sci. 54, 1020–1030 (1998)
Asencot, M. & Lensky, Y. The effect of soluble sugars in stored royal jelly on the differentiation of female honeybee (Apis mellifera L.) larvae to queens. Insect Biochem. 18, 127–133 (1988)
Asencot, M. & Lensky, Y. The phagostimulatory effect of sugars on the induction of “queenliness” in female honeybee (Apis mellifera L.) larvae. Comp. Biochem. Physiol. Part A. Physiol. 81, 203–208 (1985)
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Extended data figures and tables
Extended Data Figure 1 In vitro rearing of larvae and queen determination rates among different studies.
a, In vitro rearing of honeybee larvae. b, Queen determination rates of in vitro rearing trials among different studies and diets. An additional increase of sugar content in the normal RJ diet (12% (w/w) glucose and fructose, each) slightly, but not significantly, increased queen rate (5.9%). Our queen rates are well in agreement with a median queen determination rate of 9.4% (0–28.3%) in all other published in vitro larvae rearing experiments using 50 to 66% RJ diets. Although there is considerable variance in the queen determination rate within and among different laboratories, bee genotypes and probably RJ sources, it has never, to our knowledge, approached 100%.
Extended Data Figure 2 Phenotypic scoring.
a, Mandible categories. b, Tibia categories. c, Spermatheca diameters of virgin queens, in vitro bees and hive-reared workers. d, Ovary diameters of virgin queens, in vitro bees and hive-reared workers. e, Stinger angles of virgin queens, in vitro bees and hive-reared workers. f, Parameters quantified in workers, queens and in vitro-raised honeybees.
Extended Data Figure 3 Analysis of MRJP1 via gel-filtration and mass spectrometry.
a, Gel-filtration analysis (HiLoad 16/600 Superdex 200 pg column) of MRJP1 present in the flow through (FT) (blue line) and eluting with 300 mM NaCl (red line) from the cation exchange chromatography (SP sepharose). In 20 mM sodium citrate pH 4.0, 150 mM NaCl (upper panel) MRJP1 is present as higher oligomers (FT fraction) and as monomer (300 mM NaCl elution fraction). In 50 mM potassium phosphate pH 7.0, 150 mM NaCl, the higher oligomers detected in the FT fraction dissociate mainly into hexamer (~90%) and minor portions of dodecamer (~5%), monomer (~4%) and probably trimer (~1%). Monomeric MRJP1 detected in the citrate buffer is in phosphate buffer mostly present as monomer (~91%) but also as hexamer (~9%). The different elution volumes of monomeric MRJP1 in pH 4.0 (84 ml = 57 kDa) and pH 7.0 (82 ml = 43 kDa) may result from different hydrodynamic volumes of the protein in the respective buffers. As the hydrodynamic volume appears to change largely between pH 4.0 and 7.0, this suggests that the structure of the monomer is different at the different pH values. The column was calibrated with ferritin (440 kDa), aldolase (158 kDa), conalbumin (75 kDa), ovalbumin (44 kDa) (dashed black line) and the void volume determined with blue dextran (2,000 kDa) (solid black line). b, MRJP1 has been identified with 68.8% sequence coverage (red amino acids) by mass spectrometry. Mass deviation between measured and theoretical masses was not exceeding 5 p.p.m. and 0.02 Da for precursor and fragment ions, respectively.
Supplementary information
Supplementary Information
This file contains Supplementary Methods, Supplementary Table 2 (see separate file for Supplementary Table 1) and additional references. (PDF 292 kb)
Supplementary Tables
This file contains Supplementary Table 1 comprising a complete list with details for all measured parameters for all 538 examined bees (Sheet 1) and for all Kruskal-Wallis ANOVAs (Sheet 2) and Chi-square tests (Sheet 3). (XLSX 87 kb)
PowerPoint slides
Rights and permissions
About this article
Cite this article
Buttstedt, A., Ihling, C., Pietzsch, M. et al. Royalactin is not a royal making of a queen. Nature 537, E10–E12 (2016). https://doi.org/10.1038/nature19349
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature19349
This article is cited by
-
Structure of native glycolipoprotein filaments in honeybee royal jelly
Nature Communications (2020)
-
pH-dependent stability of honey bee (Apis mellifera) major royal jelly proteins
Scientific Reports (2019)
-
Sugaring-Out Assisted Liquid-Liquid Extraction Combined with High-Performance Liquid Chromatography-Fluorescence Detection for the Determination of Bisphenol A and Bisphenol B in Royal Jelly
Food Analytical Methods (2019)
-
Royal jelly in focus
Insectes Sociaux (2019)
-
Architecture of the native major royal jelly protein 1 oligomer
Nature Communications (2018)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.