Concerted political attention has focused on reducing deforestation1,2,3, and this remains the cornerstone of most biodiversity conservation strategies4,5,6. However, maintaining forest cover may not reduce anthropogenic forest disturbances, which are rarely considered in conservation programmes6. These disturbances occur both within forests, including selective logging and wildfires7,8, and at the landscape level, through edge, area and isolation effects9. Until now, the combined effect of anthropogenic disturbance on the conservation value of remnant primary forests has remained unknown, making it impossible to assess the relative importance of forest disturbance and forest loss. Here we address these knowledge gaps using a large data set of plants, birds and dung beetles (1,538, 460 and 156 species, respectively) sampled in 36 catchments in the Brazilian state of Pará. Catchments retaining more than 69–80% forest cover lost more conservation value from disturbance than from forest loss. For example, a 20% loss of primary forest, the maximum level of deforestation allowed on Amazonian properties under Brazil’s Forest Code5, resulted in a 39–54% loss of conservation value: 96–171% more than expected without considering disturbance effects. We extrapolated the disturbance-mediated loss of conservation value throughout Pará, which covers 25% of the Brazilian Amazon. Although disturbed forests retained considerable conservation value compared with deforested areas, the toll of disturbance outside Pará’s strictly protected areas is equivalent to the loss of 92,000–139,000 km2 of primary forest. Even this lowest estimate is greater than the area deforested across the entire Brazilian Amazon between 2006 and 2015 (ref. 10). Species distribution models showed that both landscape and within-forest disturbances contributed to biodiversity loss, with the greatest negative effects on species of high conservation and functional value. These results demonstrate an urgent need for policy interventions that go beyond the maintenance of forest cover to safeguard the hyper-diversity of tropical forest ecosystems.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    , , & Deforestation Success Stories: Tropical Nations Where Forest Protection and Reforestation Policies Have Worked. Union of Concerned Scientists June 2014 Report (2014)

  2. 2.

    et al. The end of deforestation in the Brazilian Amazon. Science 326, 1350–1351 (2009)

  3. 3.

    et al. Modelling conservation in the Amazon basin. Nature 440, 520–523 (2006)

  4. 4.

    Convention on Biological Diversity. Strategic Plan for Biodiversity 2011–2020, Aichi Biodiversity Targets (2015)

  5. 5.

    Legislative Database of the Food and Agricultural Organization of the United Nations (FAOLEX). Brazilian Environmental Law number 12.651 (25 March 2012)

  6. 6.

    & REDD+ and Biodiversity Conservation: A review of the biodiversity goals, monitoring methods and impacts of 80 REDD+ projects. Conserv. Lett. 9, 143–150 (2015)

  7. 7.

    & The incidence of fire in Amazonian forests with implications for REDD. Science 328, 1275–1278 (2010)

  8. 8.

    , & Thresholds of logging intensity to maintain tropical forest biodiversity. Curr. Biol. 24, 1893–1898 (2014)

  9. 9.

    & Confounding factors in the detection of species responses to habitat fragmentation. Biol. Rev. Camb. Philos. Soc. 81, 117–142 (2006)

  10. 10.

    Instituto Nacional de Pesquisas Espaciais (INPE). Projeto Prodes: Amazon deforestation database. Available at (2015)

  11. 11.

    et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013)

  12. 12.

    & Forest Resources Assessment of 2015 shows positive global trends but forest loss and degradation persist in poor tropical countries. For. Ecol. Manage. 352, 134–145 (2015)

  13. 13.

    & Avifaunal responses to single and recurrent wildfires in Amazonian forests. Ecol. Appl. 14, 1358–1373 (2004)

  14. 14.

    , & Increasing human dominance of tropical forests. Science 349, 827–832 (2015)

  15. 15.

    et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011)

  16. 16.

    , , , & Tropical Forests in the Anthropocene. Annu. Rev. Environ. Resour. 39, 125–159 (2014)

  17. 17.

    , , , & Understorey fire frequency and the fate of burned forests in southern Amazonia. Phil. Trans. R. Soc. B 368, 1–8 (2013)

  18. 18.

    et al. A social and ecological assessment of tropical land uses at multiple scales: the Sustainable Amazon Network. Phil. Tran. R. Soc. B 368, 20120166 (2013)

  19. 19.

    et al. A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob. Chang. Biol. 20, 3713–3726 (2014)

  20. 20.

    , & The fate of the Amazonian areas of endemism. Conserv. Biol. 19, 689–694 (2005)

  21. 21.

    International Union of Forest Research Organizations (IUFRO). Understanding Relationships between Biodiversity, Carbon, Forests and People: The Key to Achieving REDD+ Objectives (eds , & ) (2012)

  22. 22.

    , & Relative risk of extinction of passerine birds on continents and islands. Nature 399, 258–261 (1999)

  23. 23.

    , , & Predicting extinction risk in declining species. Proc. Biol. Sci. 267, 1947–1952 (2000)

  24. 24.

    et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009)

  25. 25.

    et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009)

  26. 26.

    et al. Variation in wood density determines spatial patterns in Amazonian forest biomass. Glob. Chang. Biol. 10, 545–562 (2004)

  27. 27.

    et al. Assessing the utility of statistical adjustments for imperfect detection in tropical conservation science. J. Appl. Ecol. 51, 849–859 (2014)

  28. 28.

    Gestão de Florestas Públicas – Relatório 2015. Brasília: MMA/SFB Available at (2015)

  29. 29.

    et al. Forecasting fire season severity in South America using sea surface temperature anomalies. Science 334, 787–791 (2011)

  30. 30.

    et al. Environment and Development. Brazil’s environmental leadership at risk. Science 346, 706–707 (2014)

  31. 31.

    et al. One hundred and thirty-five years of avifaunal surveys around Santarem, central Brazilian Amazon. Rev. Bras. Ornitol. 21, 16–57 (2013)

  32. 32.

    et al. Paragominas: a quantitative baseline inventory of an eastern Amazonian avifauna. Rev. Bras. Ornitol. 20, 93–118 (2012)

  33. 33.

    Hunting pressure on cracids (Cracidae: Aves) in forest concessions in Peru. Rev. Peru. Biol. 18, 225–230 (2011)

  34. 34.

    et al. Data from: Towards a worldwide wood economics spectrum. Dryad Digital Repository. (2009)

  35. 35.

    Instituto Nacional de Pesquisas Espaciais (INPE). Terraclass data 2010; available at (2013)

  36. 36.

    et al. Ten-year landsat classification of deforestation and forest degradation in the Brazilian Amazon. Remote Sens. 5, 5493–5513 (2013)

  37. 37.

    , & Using indicators of deforestation and land-use dynamics to support conservation strategies: A case study of central Rondonia, Brazil. For. Ecol. Manage. 257, 1586–1595 (2009)

  38. 38.

    , & A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography 35, 879–888 (2012)

  39. 39.

    & Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133, 225–245 (2000)

Download references


This work was supported by grants from Brazil (CNPq 574008/2008-0, 458022/2013-6, and 400640/2012-0; Embrapa SEG:; The Nature Conservancy – Brasil; CAPES scholarships) the UK (Darwin Initiative 17-023; NE/F01614X/1; NE/G000816/1; NE/F015356/2; NE/l018123/1; NE/K016431/1), Formas 2013-1571, and Australian Research Council grant DP120100797. Institutional support was provided by the Herbário IAN in Belém, LBA in Santarém and FAPEMAT. R.M. and J.R.T. were supported by Australian Research Council grant DP120100797. This is paper no. 49 in the Sustainable Amazon Network series.

Author information


  1. Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK

    • Jos Barlow
    • , Gareth D. Lennox
    • , Erika Berenguer
    • , Julio Louzada
    • , Victor Hugo Fonseca Oliveira
    • , Luke Parry
    •  & Juliana M. Silveira
  2. MCTI/Museu Paraense Emílio Goeldi, CP 399, Belém, Pará, CEP 66040-170, Brazil

    • Jos Barlow
    • , Alexander C. Lees
    • , Ima C. G. Vieira
    •  & Nárgila G. Moura
  3. Universidade Federal de Lavras, Setor de Ecologia e Conservação. Lavras, Minas Gerais, CEP 37200-000, Brazil

    • Jos Barlow
    • , Julio Louzada
    • , Victor Hugo Fonseca Oliveira
    • , Rodrigo F. Braga
    •  & Juliana M. Silveira
  4. EMBRAPA Amazônia Oriental. Belém, Pará, CEP 66095-100, Brazil

    • Joice Ferreira
    • , Thiago Moreira Cardoso
    • , Raimundo Cosme de Oliveira Jr
    •  & Adriano Venturieri
  5. Cornell Lab of Ornithology, Cornell University, Ithaca, New York 14850, USA

    • Alexander C. Lees
    •  & Nárgila G. Moura
  6. Institute for Applied Ecology, University of Canberra, Bruce, Australian Capital Territory 2617, Australia

    • Ralph Mac Nally
    •  & James R. Thomson
  7. Arthur Rylah Institute for Environmental Research, Department of Environment, Land, Water and Planning, 123 Brown Street, Heidelberg, Victoria 3084, Australia

    • James R. Thomson
  8. Universidade de São Paulo, Escola Superior de Agricultura “Luiz de Queiroz”, Esalq/USP, Avenida Pádua Dias, 11, São Dimas, Piracicaba, SP, CEP 13418-900, Brazil

    • Silvio Frosini de Barros Ferraz
    •  & Rodrigo Anzolin Begotti
  9. Universidade Federal do Pará (UFPA), Núcleo de Altos Estudos Amazonicos (NAEA), Av. Perimetral, Numero 1, Guamá, Belém-Pará, CEP 66075-750, Brazil

    • Luke Parry
  10. Universidade Federal de Viçosa, Departamento de Biologia Geral. Av. PH Rolfs s/n. Viçosa, Minas Gerais, CEP 36570-900, Brazil

    • Ricardo Ribeiro de Castro Solar
  11. Tropical Ecosystems and Environmental Sciences Group (TREES), Remote Sensing Division, National Institute for Space Research (INPE), Avenida dos Astronautas, 1.758, Jd. Granja, São José dos Campos, CEP 12227-010, SP, Brazil

    • Luiz E. O. C. Aragão
  12. College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4RJ, UK

    • Luiz E. O. C. Aragão
  13. IMAZON, Rua Dom Romualdo de Seixas 1698, Edifício Zion, 11 andar, CEP 66055-200 Belém, PA, Brazil

    • Carlos M. Souza Jr
    • , Sâmia Serra Nunes
    •  & João Victor Siqueira
  14. Instituto de Biociencias, Universidade de São Paulo, Rua do Matão, Travessa 14, 101, CEP 05508-090 São Paulo, Brazil

    • Renata Pardini
  15. Universidade Federal de Mato Grosso, Instituto de Biociencias, Departamento de Biologia e Zoologia. Av. Fernando Correa da Costa, 2367, Boa Esperança, CEP 78060-900, Cuiaba, MT, Brazil

    • Fernando Z. Vaz-de-Mello
  16. Instituto Socio Ambiental Serra do Mar (ISASM), Estrada Ribeirão das Voltas s/n, Lumiar, CEP 28616-010, Nova Friburgo, Brazil

    • Ruan Carlo Stulpen Veiga
  17. Stockholm Environment Institute, Linnégatan 87D, Box 24218, Stockholm 104 51, Sweden

    • Toby A. Gardner
  18. International Institute for Sustainability, Estrada Dona Castorina, 124, Horto, Rio de Janeiro, 22460-320, Brazil

    • Toby A. Gardner


  1. Search for Jos Barlow in:

  2. Search for Gareth D. Lennox in:

  3. Search for Joice Ferreira in:

  4. Search for Erika Berenguer in:

  5. Search for Alexander C. Lees in:

  6. Search for Ralph Mac Nally in:

  7. Search for James R. Thomson in:

  8. Search for Silvio Frosini de Barros Ferraz in:

  9. Search for Julio Louzada in:

  10. Search for Victor Hugo Fonseca Oliveira in:

  11. Search for Luke Parry in:

  12. Search for Ricardo Ribeiro de Castro Solar in:

  13. Search for Ima C. G. Vieira in:

  14. Search for Luiz E. O. C. Aragão in:

  15. Search for Rodrigo Anzolin Begotti in:

  16. Search for Rodrigo F. Braga in:

  17. Search for Thiago Moreira Cardoso in:

  18. Search for Raimundo Cosme de Oliveira Jr in:

  19. Search for Carlos M. Souza Jr in:

  20. Search for Nárgila G. Moura in:

  21. Search for Sâmia Serra Nunes in:

  22. Search for João Victor Siqueira in:

  23. Search for Renata Pardini in:

  24. Search for Juliana M. Silveira in:

  25. Search for Fernando Z. Vaz-de-Mello in:

  26. Search for Ruan Carlo Stulpen Veiga in:

  27. Search for Adriano Venturieri in:

  28. Search for Toby A. Gardner in:


T.A.G., J.F. and J.B. designed the research with additional input from E.B., A.C.L., S.F.B.F., J.L., V.H.F.O., L.P., R.R.C.S., I.C.G.V., L.E.O.C.A. and R.P. E.B., A.C.L., V.H.F.O., R.R.C.S, R.F.B., J.F., R.C.O., N.G.M. R.C.S.V., J.L., J.M.S and F.Z.V. collected the field data or analysed biological or soil samples. G.D.L. analysed the data, with input from J.B., J.R.T., R.M., A.C.L. and T.A.G. S.F.B.F., R.A.B., T.M.C., C.M.S., S.S.N., J.V.S., A.V. and T.A.G. processed the remote sensing data. J.B., G.D.L., J.F., A.C.L., R.M., J.R.T. and T.A.G. wrote the manuscript, with input from all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Jos Barlow.

Extended data

About this article

Publication history






Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.