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            Abstract
Bone marrow endothelial cells (BMECs) form a network of blood vessels that regulate both leukocyte trafficking and haematopoietic stem and progenitor cell (HSPC) maintenance. However, it is not clear how BMECs balance these dual roles, and whether these events occur at the same vascular site. We found that mammalian bone marrow stem cell maintenance and leukocyte trafficking are regulated by distinct blood vessel types with different permeability properties. Less permeable arterial blood vessels maintain haematopoietic stem cells in a low reactive oxygen species (ROS) state, whereas the more permeable sinusoids promote HSPC activation and are the exclusive site for immature and mature leukocyte trafficking to and from the bone marrow. A functional consequence of high permeability of blood vessels is that exposure to blood plasma increases bone marrow HSPC ROS levels, augmenting their migration and differentiation, while compromising their long-term repopulation and survival. These findings may have relevance for clinical haematopoietic stem cell transplantation and mobilization protocols.
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                    Figure 1: Sca-1 and nestin distinguish less permeable arterial bone marrow blood vessels, which sustain ROSlow HSC.[image: ]


Figure 2: Leaky sinusoids are the exclusive site for cellular trafficking.[image: ]


Figure 3: Plasma penetration through leaky endothelium dictates HSPC trafficking and development.[image: ]


Figure 4: Reducing endothelial barrier integrity hampers stem cell maintenance.[image: ]
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Extended data figures and tables

Extended Data Figure 1 Properties of distinct types of bone marrow blood vessels and cells in their microenvironment.
a, Flow cytometry quantitative analysis of VE-cadherin and ZO-1 MFIs by BMEC sub-populations. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰9 mice from three independent experiments. Two-tailed Studentâ€™s t-test; ***Pâ€‰<â€‰0.005. b, Representative confocal image showing CD31 (red) and Sca-1+ (green) arterial blood vessels on proximity to endosteal regions in the metaphysis and representative confocal image of endosteal regions in the metaphysis showing Sca-1+ (green) arterial blood vessels, Î±SMA+ (blue) pericytes, and OPN (red) for endosteal borders. Scale bars indicate 200â€‰Î¼m. c, Frequencies of Sca-1+ arterial blood vessels distribution among zones representing growing distances from the endosteum in the calvaria and femur. d, Average diameters of distinct types of blood vessels in the clavarial and femoral marrow. e, f, Representative images of arterial blood vessel (green, left) and of sinusoidal blood vessels (green, right) indicating how the frequency of ROShigh cells around these blood vessels was scored. The grey-masked areas surrounding the blood vessels indicate the region of distance <20â€‰Î¼m from the blood vessels. Odd numbers (1, 3, and 5) tag the nuclei of cells (blue) found in the region of interest, while even numbers (2, 4, and 6) tag ROShigh (red) cells in the region of interest. ImageJ cell counter plugin was used to analyse and score the number of total cells and ROShigh cells in the region of interest. Yellow numbers in the centre of the blood vessels indicate how many ROShigh cells are scored out of total cells. Scale bar indicates 20â€‰Î¼m. g, Frequency of ROShigh cells scored among total bone marrow cells found in proximity (<20â€‰Î¼m) to different bone marrow blood vessels. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰24 bone marrow sections were analysed from nâ€‰=â€‰6 mice. Two-tailed Studentâ€™s t-test; ***Pâ€‰<â€‰0.005. hâ€“k, White arrowheads indicate for SLAM HSPC h, Representative confocal images with ROS probe (red) of ROSlow/âˆ’, CD150+ (pink)/CD48âˆ’ (blue) SLAM HSPC, found away (>20â€‰Î¼m) from Sca-1+ (green) endosteal blood vessels, neighbouring a megakaryocyte. Yellow dashed line indicates sinusoidal borders. Scale bar indicates 20â€‰Î¼m. i, Representative confocal images of ROShigh (red), CD150+ (pink) and CD48âˆ’ (blue) SLAM-HSPC, found away (>20â€‰Î¼m) from Sca-1+ (green) endosteal blood vessels, surrounded by mature haematopoietic cells. Yellow dashed line indicates sinusoidal borders. Scale bar indicates 20â€‰Î¼m. j, Representative confocal images of cells with ROShigh (red) levels among CD150+ (pink) and CD48âˆ’ (blue) SLAM-HSPC neighbouring (<20â€‰Î¼m) Sca-1+ (green) the endosteal arteriole. Scale bar indicates 20â€‰Î¼m. k, Representative tile scan confocal images of bone marrow merged Z-stalk showing (I) CD31+ blood vessels (blue) and their neighbouring CD150+ (green) CD48/Lin (red) negative SLAM HSPC. (II) Cells nuclei are visualized (green) together with CD48/Lin (red) and CD31+ blood vessels (blue). Scale bars indicate 30â€‰Î¼m.


Extended Data Figure 2 Different populations of nestin-expressing bone marrow cells are associated with nestin-expressing arterioles.
a, Representative fluorescence images of Sca-1+ (green) blood vessels and their neighbouring NG2+ (red) MSPCs. NG2+ MSPCs were either negative (yellow arrow) or positive (white arrow) for Sca-1 expression. Scale bar indicates 20â€‰Î¼m. b, Representative fluorescence images of Sca-1+ (red) blood vessels and nestin-GFP labelling (green) blood vessels and MSPCs (white arrows). Scale bar indicates 20â€‰Î¼m. c, Representative fluorescence images of nestin+ (green) blood vessels and VE-cadherin (red) staining, showing that nestin+ blood vessel structures are co-stained with VE-cadherin while neighbouring sinusoids are VE-cadherin+/nestinâˆ’. Scale bar indicates 20â€‰Î¼m. d, Representative fluorescence images of nestin+ (green) blood vessels and their neighbouring NG2+ (red) MSPCs. NG2+/nestin+ MSPCs surrounded NG2âˆ’/nestin+ aBMECs with elongated nuclei (white arrow). Scale bar indicates 20â€‰Î¼m. e, Representative fluorescence images of large- and small-diameter nestin+ (green) blood vessels and blood vessels positive for LDL (red) uptake, indicating that nestin+ labels arteries and arterioles but not sinusoids. Scale bar indicates 20â€‰Î¼m. f, Representative flow cytometry histogram plots for gated BMECs, showing nestin-GFP expression on BMEC subpopulation which is Sca-1+ or nestin-GFP expression by Sca-1+/âˆ’ BMEC subpopulation. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰6 mice from three independent experiments. g, Representative ImageStream images of CD45-CD31+Sca-1âˆ’nestinâˆ’ sBMECs and CD45âˆ’CD31+Sca-1+nestin+ aBMECs, CD45âˆ’CD31âˆ’Sca-1+/âˆ’nestin+ MSPCs, and CD45+CD31âˆ’Sca-1+/âˆ’nestin+ haematopoietic cells. h, Representative confocal tile scan of nestin-GFP (green) femur stained with Î±SMA (red). Scale bar indicates 200â€‰Î¼m. i, Representative confocal images of endosteal regions in the metaphysis showing Î±SMA (red) enwrapped nestin+ (green) andCD31+ (white) arterial blood vessels branching into smaller endosteal nestin+CD31+ arterioles which are not associated with Î±SMA+ pericytes. Endosteal nestin+ blood vessels are surrounded by nestin+ MSPCs. Scale bars indicate 50â€‰Î¼m. j, k, Representative confocal images of diaphysial area (j) and metaphysial area (k) showing GFAP (red, Schwann cell marker) fibres associated with Sca-1+ (green) arterial blood vessel (j) or with Sca-1+ endosteal arterioles (k). Scale bar indicates 50â€‰Î¼m (j) and 100â€‰Î¼m (k). l, Bone marrow cells were incubated with 20â€‰ngâ€‰mlâˆ’1 TGFÎ²1 or vehicle for 2â€‰h. ROS MFI levels in bone marrow SLAM HSPCs were determined by flow cytometry quantitative analysis. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰9 repeats in triplicates from three independent experiments. Two-tailed Studentâ€™s t-test; ***Pâ€‰<â€‰0.005.


Extended Data Figure 3 Expression pattern of molecules involved in cellular trafficking by distinct types of blood vessels.
aâ€“h, Expression levels (MFI) of indicated surface or intracellular molecules by distinct types of BMEC as measured by flow cytometry analysis. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰8 Sca-1-EGFP and wild-type mice from two independent experiments). Two-tailed Studentâ€™s t-test; **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.005.


Extended Data Figure 4 Femural and calvarial comparison and monitoring of calvarial trafficking.
a, Evans blue dye (EBD) absorbance following extraction from the femurs or calvarias, was measured using spectrophotometric analysis at 620â€‰nm and 740â€‰nm and normalized to total protein content per femur (Bradford). Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰6 mice from two independent experiments. bâ€“e, Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰8 mice from two independent experiments. Two-tailed Studentâ€™s t-test; **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.005. b, Total BMEC frequency as determined by flow cytometry analysis. c, Sca-1+ aBMEC frequency as determined by flow cytometry analysis. d, e, VE-cadherin and ZO-1 expression (MFI) on distinct types of BMECs as determined by flow cytometry analysis. f, A representative plot showing the flow speed of an HSPC passing through a network of nestin-GFP+/âˆ’ blood vessels as a function of time. Note that the cell temporarily stops within a sinus at ~0.4â€‰s and slowly roles until it adheres again at ~0.7â€‰s. g, Snapshot images from 0, 0.03, 0.10, 0.53, and 6.3â€‰s taken from Supplementary Video 5. Nestin-GFP (green), HSPC (red), blood vessels (grey), and bone (blue) are displayed. The cell is overlaid on the pre-acquired nestin-GFP, blood vessels, and bone images. Yellow arrows indicate for the location of the trafficking HSPC. Scale bars indicate 100â€‰Î¼m.


Extended Data Figure 5 Properties of distinct types of bone marrow blood vessels under HSPC mobilization conditions and the role of the endothelial CXCL12â€“CXCR4 axis.
aâ€“e, C57BL/6 or nestin-GFP mice received a single injection of AMD3100 (5â€‰mgâ€‰perâ€‰kg) and were analysed 5â€‰min (for pCXCR4) or 30â€‰min later. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰7 mice from three independent experiments. Two-way ANOVA with Bonferroniâ€™s multiple comparison post-hoc test; *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.005. a, Evans blue dye (EBD) absorbance following EBD (30â€‰mgâ€‰perâ€‰kg) injection together with AMD3100. bâ€“d, Flow cytometry quantitative analysis and representative histogram plots of VE-cadherin, membrane-bound CXCL12, and membranal SCF MFIs. e, Intracellular CXCR4 phosphorylation (pCXCR4) levels (MFI) in distinct types of BMECs as measured by flow cytometry analysis and representative histogram plots. f, C57BL/6 mice received two injections (30â€‰min interval) of 50â€‰Î¼g 12G5 CXCR4 neutralizing antibodies or IgG control followed by EBD injection. EBD absorbance following extraction from the femur was measured using spectrophotometric analysis at 620â€‰nm and 740â€‰nm. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰6 mice from two independent experiments. Two-tailed Studentâ€™s t-test, **Pâ€‰<â€‰0.01. g, Endothelial cell (EC)-specific inducible deletion of Cxcr4 (EndoÎ”Cxcr4) or Fgfr1/2 (EndoÎ”Fgfr1/2) in mice. Mice harbouring loxP sites flanking Cxcr4 or Fgfr1 and Fgfr2 genes were crossed with a mouse line with endothelial-cell-specific VE-cadherin promoter-driven CreERT2 (VE-cadherin (Cdh5, PAC)-CreERT2). Specificity of VE-cadherin (Cdh5, PAC)-CreERT2 was validated in reporter mice carrying enhanced YFP protein following floxed stop codon (EndoYFP). Cxcr4 or Fgfr1/2 deletion or YFP expression in endothelial cells was induced by tamoxifen injection. Mouse analysis was performed 4 weeks after tamoxifen-induced Cre activity. Mice carrying only the Cxcr4lox/lox or Fgfr1/2lox/lox mutations or VE-cadherin (Cdh5, PAC)-CreERT2 transgene served as controls. hâ€“j, Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰12 mice from four independent experiments. Two-tailed Studentâ€™s t-test; ***Pâ€‰<â€‰0.005. h, Representative flow cytometry histogram and dot plots confirming BMEC specific induction of Cre activity by exclusive expression of YFP in ~70% of BMEC. i, Frequency of YFP expression and representative histogram plot, among BMEC sub-populations, was determined by flow cytometry quantitative analysis 4 weeks after tamoxifen induction of Cre activity. Note higher Cre activity, indicated by higher YFP signal, in aBMECs. Black line indicates for a positive signal region. j, Fluorescent representative images of YFP expression by distinct BMBVs (sinusoids and arteries). kâ€“m, Tamoxifen-treated wild-type and EndoÎ”Cxcr4 mice were allowed to recover for 4 weeks before studies. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰9 mice from three independent experiments. Two-tailed Studentâ€™s t-test; *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.005. k, EBD absorbance in wild-type and EndoÎ”Cxcr4 mice. l, Flow cytometry quantitative analysis of VE-cadherin MFI on BMEC from wild-type and EndoÎ”Cxcr4 mice. m, Flow cytometry quantitative analysis of blood LSK HSPCs and CD34âˆ’LSK HSPCs of wild-type or EndoÎ”Cxcr4 mice.


Extended Data Figure 6 FGF-2 administration remodels the bone marrow vasculature and the stromal compartment while retaining HSPCs in the bone marrow.
a, b, Bone marrow cells were incubated for 2â€‰h with (25% blood plasma) or without (control) peripheral blood plasma. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰9 repeats from three independent experiments. Two-tailed Studentâ€™s t-test; ***Pâ€‰<â€‰0.005. a, Frequencies of cycling Ki67+ SLAM LSK HSPC. b, Frequencies of apoptotic annexinV+ SLAM LSK HSPC. aâ€“f, C57BL/6 or nestin-GFP mice were treated with FGF-2 (200â€‰Î¼g per kg) for 7 days. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰9 mice from three independent experiments. Two-tailed Studentâ€™s t-test; *Pâ€‰<â€‰0.05, ***Pâ€‰<â€‰0.005, **Pâ€‰<â€‰0.01. c, d, Quantitative analysis of VE-cadherin and ZO-1 MFIs on BMECs. e, EBD absorbance. f, g, Flow cytometry quantitative analysis of BMEC frequencies expressing Sca-1, nestin and intracellular Ki67 cell cycling markers. h, Diameters of distinct types of bone marrow blood vessels in the metaphysis region as determined by ImageJ software analysis of high-resolution confocal images. i, Fluorescent representative images of LDL (red) uptake by sinusoidal BMEC and other bone marrow cells following diffusion into the parenchymal marrow. Note lower LDL uptake and diffusion following FGF-2 treatment. Scale bar indicates 20â€‰Î¼m. j, Representative confocal images of Sca-1+ (green) arterial blood vessels in the metaphysis region. Note higher abundance of arterial blood vessels following FGF-2 treatment. Scale bar indicates 200â€‰Î¼m. k, For the homing assay, bone marrow cells from c-Kit-EGFP labelled mice were lineage depleted, and transplanted to the indicated recipient mice. Four hours after transplantation, bones from recipient mice were recovered, flushed and crushed, and the numbers of homed Linâˆ’c-Kit-EGFP+Sca-1+CD34âˆ’ HSPCs were determined per femur by flow cytometry quantitative analysis. lâ€“q, Mice were treated with FGF-2 (200â€‰Î¼gâ€‰perâ€‰kg) for 7 days. Meanâ€‰Â±â€‰s.e.m., unless indicated otherwise nâ€‰=â€‰12 mice from three independent experiments. Two-tailed Studentâ€™s t-test; **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.005. l, HSPC homing per femur. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰8 mice from three independent experiments. m, Numbers of LSK HSPCs in the blood. n, Levels of chimaerism indicating LTR-HSC contribution from blood transplant. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰20 mice from two independent experiments. o, Frequencies and representative density plots of bone marrow Î±SMA+ pericytes as determined by flow cytometry analysis. p, q, Expression levels (MFI) and representative histograms of glucose uptake by HSPCs and MSPCs, respectively, were determined by flow cytometry analysis.


Extended Data Figure 7 Genetic breaching of the endothelial barrier remodels the bone marrow vasculature and the stromal compartment while enhancing HSPC egress in a ROS dependent manner.
a, EBD absorbance. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰6 mice from three independent experiments. Two-tailed Studentâ€™s t-test; **Pâ€‰<â€‰0.01. b, c, Quantitative analysis of VE-cadherin and ZO-1 MFIs on BMEC. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰6 mice from three independent experiments. Two-tailed Studentâ€™s t-test; *Pâ€‰<â€‰0.05. dâ€“h, Flow cytometry quantitative analysis of BMEC frequencies, surface and intracellular molecules expression (MFI), in wild-type or EndoÎ”Fgfr1/2 mice. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰9 mice from three independent experiments. Two-tailed Studentâ€™s t-test; **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.005. i, Diameters of distinct types of bone marrow blood vessels in the metaphysis region as determined by ImageJ software analysis of high-resolution confocal images. j, Representative confocal representative images of Sca-1+ (green) arterial blood vessels in the metaphysis region. Note lower abundance of arterial blood vessels in EndoÎ”Fgfr1/2 mice. Scale bar indicates 200â€‰Î¼m. k, l, Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰16 bone marrow sections were analysed from nâ€‰=â€‰4 mice. Two-way ANOVA with Bonferroniâ€™s multiple comparison post-hoc test; **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.005). k, Frequency of ROShigh cells scored among total bone marrow cells found in proximity (<20â€‰Î¼m) to different bone marrow blood vessels, in wild-type or EndoÎ”Fgfr1/2 mice. l, Frequency of ROShigh cells scored among total bone marrow cells found in proximity (<20â€‰Î¼m) to different bone marrow blood vessels, in C57BL/6 mice treated with neutralizing rat anti-VE-cadherin antibodies or rat IgG control antibodies (50â€‰Î¼g per mouse per day) for 2 days. mâ€“o, Flow cytometry quantitative analysis of HSPC glucose uptake (m) (MFI), frequency of cycling HSPC (n) and apoptotic HSPC (o). Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰9 mice from three independent experiments. Two-tailed Studentâ€™s t-test; **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.005. p, q, Frequencies of donor-derived lymphoid B220+ or myeloid CD11b+ cells in the PB of recipient mice, as were determined 24 weeks after transplantation by flow cytometry. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰18 donor mice from two independent experiments, for 3 recipient mice per donor. Two-tailed Studentâ€™s t-test; ***Pâ€‰<â€‰0.005. râ€“t, Wild-type or EndoÎ”Fgfr1/2 mice were treated with NAC (130â€‰mgâ€‰perâ€‰kg) or PBS for 7 days. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰9 mice from three independent experiments. Two-tailed Studentâ€™s t-test; **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.005. r, Number of circulating peripheral blood HSPC as determined by quantitative flow cytometry analysis. s, Number of bone marrow SLAM LSK HSPC as determined by quantitative flow cytometry analysis. t, Levels of chimaerism, indicating LTR-HSC contribution, were determined 24 weeks after transplantation by flow cytometry ratio analysis (CD45.2/(CD45.2â€‰+â€‰CD45.1)). Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰24 donor mice from two independent experiments, for 3 recipient mice per donor.


Extended Data Figure 8 Endothelial barrier manipulation affects stromal properties, development and the levels of bone remodelling hormones.
aâ€“d, Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰9 mice from three independent experiments. Two-tailed Studentâ€™s t-test; **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.005. a, Glucose uptake by bone marrow MSPC as determined by quantitative flow cytometry (MFI) analysis. b, Frequencies of bone marrow Î±SMA+ pericytes as determined by flow cytometry analysis. c, Average number of scored (ImageJ) CFU-F per well and representative images. d, Average determined (ImageJ) percentage of mineralized area per well and representative images. eâ€“i, C57BL/6 mice were treated with neutralizing rat anti-VE-cadherin antibodies or rat IgG control antibodies (50â€‰Î¼g per mouse per day) for 5 days. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰9 mice from three independent experiments. Two-tailed Studentâ€™s t-test and one-way ANOVA with Bonferroniâ€™s multiple comparison post-hoc test; **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.005. e, Frequency of bone marrow MSPC as determined by flow cytometry quantitative analysis. f, Glucose uptake by bone marrow MSPC as determined by quantitative flow cytometry (MFI) analysis. g, Frequencies of bone marrow Î±SMA+ pericytes as determined by flow cytometry analysis. h, Average number of scored (ImageJ) CFU-F per well and representative images. i, Average determined (ImageJ) percentage of mineralized area per well and representative images. jâ€“o, Bone marrow supernatants from wild-type or EndoÎ”Fgfr1/2, PBS or FGF-2 (200â€‰Î¼g per kg) treated for 7 days, and IgG or rat anti-VE-cadherin (50â€‰Î¼g per mouse per day) for 5 days, were isolated and bone marrow concentrations of calcitonin and PTH hormones were determined using an ELISA assay. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰9 mice per group from three independent experiments. Two-tailed Studentâ€™s t-test; ***Pâ€‰<â€‰0.005.


Extended Data Figure 9 Pharmacological breaching of the endothelial barrier remodels the bone marrow vasculature and the stromal compartment while enhancing HSPCs egress in a ROS-dependent manner.
aâ€“j, C57BL/6 mice were treated with neutralizing rat anti-VE-cadherin antibodies or rat IgG control antibodies (50â€‰Î¼g per mouse per day) for 5 days. Meanâ€‰Â±â€‰s.e.m., unless otherwise indicated, nâ€‰=â€‰9 mice from three independent experiments. Two-tailed Studentâ€™s t-test; *Pâ€‰<â€‰0.05, **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.005. a, EBD absorbance. b, HSPCs homing per femur. c, Quantitative analysis of blood LSK HSPC and chimaerism levels indicating LTR-HSC contribution. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰10 mice from two independent experiments. d, Chimaerism levels indicating LTR-HSC contribution. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰18 donor mice from two independent experiments, for 3 recipient mice per donor. e, f, Quantitative analysis and representative histogram plots of HSPCs and PÎ±S MSPCs ROS MFI. g, Representative images of ROShigh (red) cells in proximity to blood vessels. Scale bar indicates 20â€‰Î¼m. hâ€“k, C57BL/6 mice were treated with neutralizing rat anti-VE-cadherin antibodies or rat IgG control antibodies (50â€‰Î¼g per mouse per day) for 2 days. Where indicated, mice were also treated with NAC (130â€‰mgâ€‰perâ€‰kg) or PBS for 2 days. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰9 mice from three independent experiments. Two-tailed Studentâ€™s t-test and one-way ANOVA with Bonferroniâ€™s multiple comparison post-hoc test; *Pâ€‰<â€‰0.05, ***Pâ€‰<â€‰0.005. h, White blood cell (WBC) numbers in the blood circulation were determined using a haematocytometer and Turk lysis of erythrocytes. i, Flow cytometry quantitative analysis of CD34- LSK HSPC in the blood circulation. jâ€“k, Bone marrow MNC or bone marrow lineage depleted cells from treated mice were seeded on a 5â€‰Î¼m pore transwell and allowed to migrate for 2â€‰h towards CXCL12 (125â€‰ngâ€‰mlâˆ’1). Following migration, the frequency of migrated bone marrow MNC or CD34âˆ’/LSK HSPC was determined by flow cytometry quantitative analysis. Note preferential HSPC enhanced migration after VE-cadherin neutralization. lâ€“p, C57BL/6 mice were treated with neutralizing rat anti-VE-cadherin antibodies or rat IgG control antibodies (50â€‰Î¼g per mouse per day) for 5 days. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰9 mice from three independent experiments. Two-tailed Studentâ€™s t-test; **Pâ€‰<â€‰0.01, ***Pâ€‰<â€‰0.005. l, Glucose uptake levels (MFI) by HSPC as determined by flow cytometry quantitative analysis. mâ€“n, Frequencies of Ki67+ cycling and AnnexinV+ SLAM LSK HSPC as determined by flow cytometry quantitative analysis. o, Frequency of Sca-1+ aBMEC out of the total as determined by flow cytometry quantitative analysis. p, Diameters of distinct types of bone marrow blood vessels in the metaphysis region as determined by ImageJ software analysis of high-resolution confocal images. q, Confocal representative images of Sca-1+ (green) arterial blood vessels in the metaphysis region. Note lower abundance of arterial blood vessels following 5 days of anti-VE-cadherin treatment. Scale bar indicates 200â€‰Î¼m. râ€“t, C57BL/6 mice were treated with NAC (130â€‰mgâ€‰perâ€‰kg) or PBS for 7 days. Meanâ€‰Â±â€‰s.e.m., nâ€‰=â€‰8 mice from two independent experiments. Two-tailed Studentâ€™s t-test; ***Pâ€‰<â€‰0.005. r, Flow cytometry quantitative analysis of CD34âˆ’ LSK HSPC in the blood circulation. s, EBD absorbance following extraction from the femur was measured using spectrophotometric analysis at 620â€‰nm and 740â€‰nm. t, VE-cadherin expression levels (MFI) on distinct types of BMEC as determined by flow cytometry quantitative analysis (arterial and sinusoidal respectively).


Extended Data Figure 10 Illustration of proposed bone marrow blood vessels model and regulation of haematopoiesis.
Bone marrow vasculature is composed of two main types of blood vessels which are arterial blood vessels and sinusoids. Blood enters the bone marrow via the arteries, branching to smaller arterioles, which in proximity to endosteal areas, further branch into small-diameter endosteal arterioles. These endosteal arterioles reconnect to downstream sinusoids which drain the blood into the central sinus and out of the bone marrow. Arterial BMEC have elongated nuclear morphology, express Sca-1 and nestin markers, and display high barrier integrity properties. In addition, arterial blood vessels display the highest blood flow speed and shear rate. Arterial BMEC maintain a microenvironment that promotes low ROS state of HSCs in its surrounding. The second layer of cells associated with arteries is composed of Î±SMA+ pericytes, while endosteal arterioles are associated with HSC-supportive MSPCs. The association of MSPCs and ROSlow HSCs with endosteal capillaries suggests the existence of an osteo-vascular niche where the residing HSCs are influenced by both endosteal and vascular elements simultaneously. Innervating Schwann cell nerve fibres, shown to maintain HSC dormancy, were found to be associated with arteries and endosteal arterioles. More permeable fenestrated sinusoids induce higher ROS state in their surroundings, and have slower internal blood flow, all of which makes them the ultimate candidate to serve as the site for bone marrow cellular trafficking. Megakaryocytes found in sinusoidal sites support and maintain HSPC in a ROS low state. Live real-time imaging indicates that all leukocyte trafficking occurs exclusively via sinusoids. Furthermore, experimental systems manipulating endothelial barrier integrity provide evidence that more fenestrated endothelial state promotes trafficking at the expense of stem cell maintenance. Yet, conditions enhancing endothelial integrity, reducing cellular trafficking promote bone marrow stem cell expansion and maintenance. Peripheral blood plasma, which can penetrate into the bone marrow more easily via fenestrated blood vessels, enhances HSPC migratory capacity but hampers their long-term repopulation capacity and survival. Thus, the state of the endothelial bloodâ€“bone-marrow barrier in distinct blood vessels and under steady state or â€˜stressâ€™ conditions may have a strong regulatory impact on tissue residing stem cells.
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A Z-stack of two-photon images captured inside Sca-1-EGFP (green) mouse calvarium 
Blood vessels were labeled using Qtracker (red). Sca-1 positive small diameter BVs are found adjacently to calcified bone surface (second harmonic signal, blue). Note the disappearance of EGFP labeled BVs in the depth of the marrow, away from the endosteal surface, while still observing EGFP labeled round single hematopoietic cells. Scale bar indicates 25 Âµm. (MP4 4324 kb)


A Z-stack of two-photon images captured inside nestin-EGFP (green) mouse calvarium
Blood vessels were labeled using Qtracker (red). Nestin positive small diameter BVs are found adjacently to calcified bone surface (second harmonic signal, blue). Mice were injected with Di-Acetyl-LDL (pink) 2 hours prior to intravital images acquisition. Note the exclusive uptake of LDL by the large diameter sinusoids which are all negative for GFP. Scale bar indicates 15 Âµm. (MP4 3145 kb)


A representative intravital live video of in vivo permeability measurements via perfusion and leakage of Rhodamine-Dextran (70 kDa) (red) in bone marrow vasculature of nestin-GFP (green) mouse calvarium 
Calcified bone and blood flow reflectance (in blue) were visualized by second harmonic signal. Rhodamine diffusion signal was collected from defined regions that were set immediately adjacent to the BV of interest (i.e. positive or negative for nestin expression). The average intensity within the regions of interest was measured over time and the slope calculated. The slope value indicated for the blood vessel permeability. Scale bar indicates 100 Âµm. (MP4 67409 kb)


An intravital video showing only the red channel (in grey) of Supplementary video 3, allowing the measurements of Dextran diffusion
Regions of interest for signal acquisition are defined by yellow borders. Note the higher diffusion in the region adjacent to the sinusoid relatively to the region adjacent to the nestin+ BV. (MP4 65017 kb)


41586_2016_BFnature17624_MOESM303_ESM.mp4
A representative intravital video showing PB circulating labeled RBCs (in yellow), flowing at high speed thru a small-diameter endosteal arteriole, and dramatically decelerating once entering a larger sinusoidal BV. Blood vessels are labeled with Rhodamine-Dextran (500 kDa) (red). (MP4 1325 kb)


A representative intravital video of DiD-labeled HSPCs (red) that were injected into nestin-GFP (green) mice and monitored for their trafficking in different types of BVs
Note that the monitored cell arrives at the endosteal area (blue) via a nestin+ BV then slows down, arrests and crawls, only when it reaches the downstream sinusoid. Scale bar indicates 50 Âµm. (MP4 22500 kb)


A three dimensional reconstruction of Z-stack planes of intravital 2 photon images taken in the calvarium of nestin-GFP (green) mouse that was injected with Dil-labeled BM MNC (blue) and DiD-labeled BM HSPC (red). 
The video represents a network of blood vessels (grey) in the BM and adjacently adhering or extravasating cells. Note the occurrence of these events only in the large diameter nestin- sinusoids.  (MP4 3109 kb)


A representative intravital video of Dil-labeled BM MNC (blue) and DiD-labeled BM HSPC (red) that were injected into nestin-GFP (green) mice and monitored for their trafficking in different types of BVs. 
Note two extravasation events (in the middle of the screen) of MNCs (blue) via BM sinusoids (gray) into the marrow. Scale bar indicates 25 Âµm. (MP4 462 kb)


A representative intravital video of Dil-labeled BM MNC (blue) and DiD-labeled BM HSPC (red) that were injected into nestin-GFP (green) mice and monitored for their trafficking in different types of BVs. 
Note extravasation event (in the upper right side of the screen) of HSPC (red) via BM sinusoids (gray) into the marrow. Scale bar indicates 25 Âµm. (MP4 422 kb)


A Z-stack of two-photon images captured inside nestin-EGFP (green) mouse calvarium
A Z-stack of intravital images captured inside nestin-EGFP (green) mouse calvarium with labeled blood vessels (Angiosense 750EX, red). Video represents the environment of the location of cellular trafficking and extravasation (sinusoid). Note the relative proximity to a nestin+ BV. Scale bar indicates 25 Âµm. (MP4 777 kb)
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        Editorial Summary
Bone marrow blood vessel specialization
Endothelial cells of the bone marrow modulate both haematopoietic stem cell (HSC) maintenance and the trafficking of blood cells out of the bone marrow. Tsvee Lapidot and colleagues find that these two aspects are controlled by two distinct types of blood vessels in the bone marrow, with different permeability properties and reactive oxygen species (ROS) levels. Less permeable arteries surrounded by pericytes maintain HSCs in a low reactive oxygen species (ROS) state, whereas the more permeable smaller sinusoids promote HSC activation and allow trafficking of immature and mature leukocytes. The authors also show that in conditions that allow for expansion of HSCs, endothelial integrity is increased, with fewer blood cells moving in and out. Disruption of the endothelial barrier has the reverse effects. Elsewhere in this issue (page 380), Anjali Kusumbe et al. demonstrate that Notch signalling in endothelial cells of bone marrow induces change in the capillaries and mesenchymal stem cells of the environment to support HSC amplification.
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