Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow


Volcanic hotspot tracks featuring linear progressions in the age of volcanism are typical surface expressions of plate tectonic movement on top of narrow plumes of hot material within Earth’s mantle1. Seismic imaging reveals that these plumes can be of deep origin2—probably rooted on thermochemical structures in the lower mantle3,4,5,6. Although palaeomagnetic and radiometric age data suggest that mantle flow can advect plume conduits laterally7,8, the flow dynamics underlying the formation of the sharp bend occurring only in the Hawaiian–Emperor hotspot track in the Pacific Ocean remains enigmatic. Here we present palaeogeographically constrained numerical models of thermochemical convection and demonstrate that flow in the deep lower mantle under the north Pacific was anomalously vigorous between 100 million years ago and 50 million years ago as a consequence of long-lasting subduction systems, unlike those in the south Pacific. These models show a sharp bend in the Hawaiian–Emperor hotspot track arising from the interplay of plume tilt and the lateral advection of plume sources. The different trajectories of the Hawaiian and Louisville hotspot tracks arise from asymmetric deformation of thermochemical structures under the Pacific between 100 million years ago and 50 million years ago. This asymmetric deformation waned just before the Hawaiian–Emperor bend developed, owing to flow in the deepest lower mantle associated with slab descent in the north and south Pacific.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Time evolution of model plume trajectories in a model of thermochemical convection.
Figure 2: Longitudinal cross-sections.
Figure 3: Predicted hotspot tracks.


  1. Morgan, W. J. Convection plumes in the lower mantle. Nature 230, 42–43 (1971)

    Article  ADS  Google Scholar 

  2. French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015)

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Jellinek, A. M. & Manga, M. The influence of a chemical boundary layer on the fixity, spacing and lifetime of mantle plumes. Nature 418, 760–763 (2002)

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Lin, S.-C. & van Keken, P. E. Dynamics of thermochemical plumes: 2. Complexity of plume structures and its implications for mapping mantle plumes. Geochem. Geophys. Geosyst. 7, Q03003 (2006)

    Article  ADS  Google Scholar 

  5. Farnetani, C. Excess temperature of mantle plumes: the role of chemical stratification across D′′. Geophys. Res. Lett. 24, 1583–1586 (1997)

    Article  ADS  CAS  Google Scholar 

  6. Thorne, M. S., Garnero, E. J. & Grand, S. P. Geographic correlation between hot spots and deep mantle lateral shear-wave velocity gradients. Phys. Earth Planet. Inter. 146, 47–63 (2004)

    Article  ADS  Google Scholar 

  7. Tarduno, J. A. et al. The Emperor seamounts: southward motion of the Hawaiian hotspot plume in Earth’s mantle. Science 301, 1064–1069 (2003)

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Koppers, A. A. et al. Limited latitudinal mantle plume motion for the Louisville hotspot. Nature Geosci . 5, 911–917 (2012)

    Article  ADS  CAS  Google Scholar 

  9. Koppers, A. A., Duncan, R. A. & Steinberger, B. Implications of a nonlinear 40Ar/39Ar age progression along the Louisville seamount trail for models of fixed and moving hot spots. Geochem. Geophys. Geosyst. 5, Q06L02 (2004)

    Article  CAS  Google Scholar 

  10. Hassan, R., Flament, N., Gurnis, M., Bower, D. J. & Müller, D. Provenance of plumes in global convection models. Geochem. Geophys. Geosyst. 16, 1465–1489 (2015)

    Article  ADS  Google Scholar 

  11. Bower, D. J., Gurnis, M. & Seton, M. Lower mantle structure from paleogeographically constrained dynamic Earth models. Geochem. Geophys. Geosyst. 14, 44–63 (2013)

    Article  ADS  Google Scholar 

  12. McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005)

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Burke, K., Steinberger, B., Torsvik, T. H. & Smethurst, M. A. Plume generation zones at the margins of large low shear velocity provinces on the core–mantle boundary. Earth Planet. Sci. Lett. 265, 49–60 (2008)

    Article  ADS  CAS  Google Scholar 

  14. Torsvik, T. H. et al. Deep mantle structure as a reference frame for movements in and on the Earth. Proc. Natl Acad. Sci. USA 111, 8735–8740 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Steinberger, B., Sutherland, R. & O’Connell, R. J. Prediction of Emperor–Hawaii seamount locations from a revised model of global plate motion and mantle flow. Nature 430, 167–173 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Wright, N. M., Müller, R. D., Seton, M. & Williams, S. E. Revision of paleogene plate motions in the Pacific and implications for the Hawaiian-Emperor bend. Geology 43, 455–458 (2015)

    Article  ADS  Google Scholar 

  17. Tarduno, J., Bunge, H.-P., Sleep, N. & Hansen, U. The bent Hawaiian-Emperor hotspot track: inheriting the mantle wind. Science 324, 50–53 (2009)

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Tarduno, J. A. On the motion of Hawaii and other mantle plumes. Chem. Geol. 241, 234–247 (2007)

    Article  ADS  CAS  Google Scholar 

  19. Bower, D. J., Gurnis, M. & Flament, N. Assimilating lithosphere and slab history in 4-D Earth models. Phys. Earth Planet. Inter. 238, 8–22 (2015)

    Article  ADS  Google Scholar 

  20. Garnero, E. J. & McNamara, A. K. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Lay, T., Williams, Q. & Garnero, E. J. The core–mantle boundary layer and deep Earth dynamics. Nature 392, 461–468 (1998)

    Article  ADS  CAS  Google Scholar 

  22. van der Meer, D. G., Spakman, W., van Hinsbergen, D. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geosci . 3, 36–40 (2010)

    Article  ADS  CAS  Google Scholar 

  23. Steinberger, B. & Calderwood, A. R. Models of large-scale viscous flow in the Earth’s mantle with constraints from mineral physics and surface observations. Geophys. J. Int. 167, 1461–1481 (2006)

    Article  ADS  CAS  Google Scholar 

  24. van Keken, P. E., Yuen, D. A. & van den Berg, A. P. Implications for mantle dynamics from the high melting temperature of perovskite. Science 264, 1437–1439 (1994)

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Olson, P., Schubert, G. & Anderson, C. Plume formation in the D′′-layer and the roughness of the core–mantle boundary. Nature 327, 409–413 (1987)

    Article  ADS  Google Scholar 

  26. Steinberger, B. Plumes in a convecting mantle: models and observations for individual hotspots. J. Geophys. Res. Solid Earth 105, 11127–11152 (2000)

    Article  Google Scholar 

  27. Montelli, R. et al. Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343 (2004)

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Zhong, S. & Rudolph, M. L. On the temporal evolution of long-wavelength mantle structure of the Earth since the early Paleozoic. Geochem. Geophys. Geosyst. 16, 1599–1615 (2015)

    Article  ADS  Google Scholar 

  29. Portnyagin, M., Savelyev, D., Hoernle, K., Hauff, F. & Garbe-Schönberg, D. Mid-Cretaceous Hawaiian tholeiites preserved in Kamchatka. Geology 36, 903–906 (2008)

    Article  ADS  CAS  Google Scholar 

  30. Torsvik, T. H., Steinberger, B., Cocks, L. R. M. & Burke, K. Longitude: linking Earth’s ancient surface to its deep interior. Earth Planet. Sci. Lett. 276, 273–282 (2008)

    Article  ADS  CAS  Google Scholar 

  31. Christensen, U. R. & Yuen, D. A. Layered convection induced by phase transitions. J. Geophys. Res. 90, 10291–10300 (1985)

    Article  ADS  Google Scholar 

  32. Zhong, S., McNamara, A., Tan, E., Moresi, L. & Gurnis, M. A benchmark study on mantle convection in a 3-D spherical shell using CitcomS. Geochem. Geophys. Geosyst. 9, Q10017 (2008)

    Article  ADS  Google Scholar 

  33. Tosi, N., Yuen, D. A., de Koker, N. & Wentzcovitch, R. M. Mantle dynamics with pressure- and temperature-dependent thermal expansivity and conductivity. Phys. Earth Planet. Inter. 217, 48–58 (2013)

    Article  ADS  Google Scholar 

  34. Karato, S.-I. & Wu, P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993)

    Article  ADS  CAS  PubMed  Google Scholar 

  35. Tackley, P. J. Effects of strongly variable viscosity on three-dimensional compressible convection in planetary mantles. J. Geophys. Res. 101, 3311–3332 (1996)

    Article  ADS  Google Scholar 

  36. Seton, M. et al. Global continental and ocean basin reconstructions since 200Ma. Earth Sci. Rev. 113, 212–270 (2012)

    Article  ADS  Google Scholar 

  37. Shephard, G. E., Müller, R. D. & Seton, M. The tectonic evolution of the Arctic since Pangea breakup: integrating constraints from surface geology and geophysics with mantle structure. Earth Sci. Rev. 124, 148–183 (2013)

    Article  ADS  Google Scholar 

  38. Steinberger, B. & Torsvik, T. H. Absolute plate motions and true polar wander in the absence of hotspot tracks. Nature 452, 620–623 (2008)

    Article  ADS  CAS  PubMed  Google Scholar 

  39. McNamara, A. K. & Zhong, S. Thermochemical structures within a spherical mantle: superplumes or piles? J. Geophys. Res. 109, B07402 (2004)

    Article  ADS  CAS  Google Scholar 

  40. Backus, G. Poloidal and toroidal fields in geomagnetic field modeling. Rev. Geophys. 24, 75–109 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  41. Auer, L., Boschi, L., Becker, T., Nissen-Meyer, T. & Giardini, D. Savani: a variable resolution whole-mantle model of anisotropic shear velocity variations based on multiple data sets. J. Geophys. Res. 119, 3006–3034 (2014)

    Article  ADS  Google Scholar 

  42. Lekic, V., Cottaar, S., Dziewonski, A. & Romanowicz, B. Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357/358, 68–77 (2012)

    Article  ADS  CAS  Google Scholar 

Download references


M.G. was supported by the NSF (awards EAR-1161046 and EAR-1247022). R.D.M. and N.F. were supported by an ARC grant (IH130200012). This research was undertaken with the assistance of resources from the National Computational Infrastructure (NCI), which is supported by the Australian Government.

Author information

Authors and Affiliations



R.H. and R.D.M. developed the concept of the study. R.H. and M.G. designed the numerical experiments and developed the technical aspects of the study. All authors contributed both intellectually and to the writing of the paper.

Corresponding author

Correspondence to Rakib Hassan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Comparison of model LLSVPs with tomography.

The Savani tomography model41, showing shear velocity (vs) perturbations at 2,818 km depth. Contours of the 75% chemical concentration isosurface, at labelled heights above the CMB, show the present-day shapes of the model LLSVPs in case M3 (Extended Data Table 2). The red triangle and purple cross symbols mark the locations of the actual and model Hawaiian plumes at present-day, respectively.

Extended Data Figure 2 Evolution of mean poloidal flow.

In each panel, the magnitude of mean poloidal velocity in a 300-km-thick shell above the CMB is shown in grey shading and corresponding flow directions are shown by black arrows at the age labelled, for case M3 (Extended Data Table 2). Edges of the model LLSVPs are marked by contours of the 75% chemical concentration isosurface, at labelled heights above the CMB. Subduction zones are shown in yellow and the white rectangular region marks the extent of the three-dimensional plots in Extended Data Fig. 3. In the bottom row of each panel, cross-sections along cyan profiles through the Pacific LLSVP show the evolution of its edges driven by subduction-induced flow. Velocity vectors in these cross-sections have been clipped to 6 cm yr−1 and the black contours show 75% chemical concentration.

Extended Data Figure 3 Trajectory of model Hawaiian plume.

Three-dimensional (Cartesian projection of spherical geometry) perspectives showing the southward motion and evolution of tilt for model plume corresponding to Hawaii (Hm) in case M3 (Extended Data Table 2). The black contour marks the 75% chemical concentration isosurface 100 km above the CMB. The temperature field above layer averages, δT, is isosurfaced at a value of 0.1 to delineate plume conduits. The top 200 km of the domain is not rendered, in order to avoid visual clutter.

Extended Data Figure 4 Inter-model comparisons.

a, For case M1 (Extended Data Table 2), the background shading, velocity vectors and subduction zones shown are as described in Fig. 1a. The model plume trajectory for Hawaii (Hm) at a depth of 350 km is coloured by age. b, For case M2. c, For case M4. d, For case M5. e, For case M6. f, For case M7.

Extended Data Table 1 Physical parameters and constants
Extended Data Table 2 Model cases

Supplementary information

Evolution of mean poloidal flow in the deep lower mantle.

The video shows the evolution of mean poloidal flow in a 300 km thick shell above the core mantle boundary over the last 140 million years. Cross sections along profiles through the Pacific LLSVP show the evolution of its edges driven by subduction-induced flow. (MP4 10037 kb)

Trajectory of modelled Hawaiian plume.

The video shows the southward motion of the modelled Hawaiian plume and the evolution of its tilt. The black contour marks the 75% chemical concentration isosurface 100 km above the core mantle boundary. (MP4 4316 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hassan, R., Müller, R., Gurnis, M. et al. A rapid burst in hotspot motion through the interaction of tectonics and deep mantle flow. Nature 533, 239–242 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing