Detection of a Cooper-pair density wave in Bi2Sr2CaCu2O8+x

  • Nature volume 532, pages 343347 (21 April 2016)
  • doi:10.1038/nature17411
  • Download Citation


The quantum condensate of Cooper pairs forming a superconductor was originally conceived as being translationally invariant. In theory, however, pairs can exist with finite momentum Q, thus generating a state with a spatially modulated Cooper-pair density1,2. Such a state has been created in ultracold 6Li gas3 but never observed directly in any superconductor. It is now widely hypothesized that the pseudogap phase4 of the copper oxide superconductors contains such a ‘pair density wave’ state5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21. Here we report the use of nanometre-resolution scanned Josephson tunnelling microscopy22,23,24 to image Cooper pair tunnelling from a d-wave superconducting microscope tip to the condensate of the superconductor Bi2Sr2CaCu2O8+x. We demonstrate condensate visualization capabilities directly by using the Cooper-pair density variations surrounding zinc impurity atoms25 and at the Bi2Sr2CaCu2O8+x crystal supermodulation26. Then, by using Fourier analysis of scanned Josephson tunnelling images, we discover the direct signature of a Cooper-pair density modulation at wavevectors QP ≈ (0.25, 0)2π/a0 and (0, 0.25)2π/a0 in Bi2Sr2CaCu2O8+x. The amplitude of these modulations is about five per cent of the background condensate density and their form factor exhibits primarily s or s′ symmetry. This phenomenology is consistent with Ginzburg–Landau theory5,13,14 when a charge density wave5,27 with d-symmetry form factor28,29,30 and wavevector QC = QP coexists with a d-symmetry superconductor; it is also predicted by several contemporary microscopic theories for the pseudogap phase18,19,20,21.

  • Subscribe to Nature for full access:



Additional access options:

Already a subscriber?  Log in  now or  Register  for online access.


  1. 1.

    & Superconductivity in a strong spin-exchange field. Phys. Rev. 135, A550–A563 (1964)

  2. 2.

    & Neodnorodnoe sostoyanie sverkhprovodnikov. Zh. Eksp. Teor. Fis. 47, 1136–1146 (1964); Inhomogeneous state of superconductors. Sov. Phys. JETP 20, 762–769 (1965)

  3. 3.

    et al. Spin-imbalance in a one-dimensional Fermi gas. Nature 467, 567–569 (2010)

  4. 4.

    & The electronic nature of high temperature cuprate superconductors. Rep. Prog. Phys. 66, 1547–1610 (2003)

  5. 5.

    , & Theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457–482 (2015)

  6. 6.

    , & Stripe states with spatially oscillating d-wave superconductivity in the two-dimensional t–t´–J model. Phys. Rev. Lett. 88, 117001 (2002)

  7. 7.

    , & Unidirectional d-wave superconducting domains in the two-dimensional t–J model. Phys. Rev. B 76, 140505 (2007)

  8. 8.

    , , , & Nature of stripes in the generalized t–J model applied to the cuprate superconductors. New J. Phys. 11, 055053 (2009)

  9. 9.

    , , & Mean-field pairing theory for the charge-stripe phase of high-temperature cuprate superconductors. Phys. Rev. Lett. 107, 187001 (2011)

  10. 10.

    , & Competing states in the t–J model: Uniform d-wave state versus stripe state. Phys. Rev. Lett. 113, 046402 (2014)

  11. 11.

    et al. Dynamical layer decoupling in a stripe-ordered high-Tc superconductor. Phys. Rev. Lett. 99, 127003 (2007)

  12. 12.

    , & Complementary pair-density-wave and d-wave-checkerboard orderings in high-temperature superconductors. Phys. Rev. B 78, 094510 (2008)

  13. 13.

    , & Charge-4e superconductivity from pair-density-wave order in certain high-temperature superconductors. Nature Phys. 5, 830–833 (2009)

  14. 14.

    & Dislocations and vortices in pair-density-wave superconductors. Nature Phys. 4, 639–642 (2008)

  15. 15.

    , & Quantum oscillations in a π-striped superconductor. Phys. Rev. B 86, 104507 (2012)

  16. 16.

    Amperean pairing and the pseudogap phase of cuprate superconductors. Phys. Rev. X 4, 031017 (2014)

  17. 17.

    , , & Pair density wave in the pseudogap state of high temperature superconductors. Phys. Rev. Lett. 93, 187002 (2004)

  18. 18.

    , , & Pseudogap, charge order, and pairing density wave at the hot spots in cuprate superconductors. Phys. Rev. B 90, 195207 (2014)

  19. 19.

    , & Renormalization group analysis of the pair-density-wave and charge order within the fermionic hot-spot model for cuprate superconductors. Phys. Rev. B 92, 045132 (2015)

  20. 20.

    , & Interplay between pair- and charge-density-wave orders in underdoped cuprates. Phys. Rev. B 91, 115103 (2015)

  21. 21.

    , & Coexistence of charge-density-wave and pair-density-wave orders in underdoped cuprates. Phys. Rev. Lett. 114, 197001 (2015)

  22. 22.

    , & Fluctuation dominated Josephson tunneling with a scanning tunneling microscope. Phys. Rev. Lett. 87, 097004 (2001)

  23. 23.

    , & On the use of STM superconducting tips at very low temperatures. Eur. Phys. J. B 40, 483–488 (2004)

  24. 24.

    . et al. Probing the superconducting condensate on a nanometer scale. Europhys. Lett. 73, 962–968 (2006)

  25. 25.

    et al. Muon spin relaxation studies of Zn-substitution effects in high-Tc cuprate superconductors. Phys. Rev. Lett. 77, 5421 (1996)

  26. 26.

    et al. Imaging the impact on cuprate superconductivity of varying the interatomic distances within individual crystal unit cells. Proc. Natl Acad. Sci. USA 105, 3203–3208 (2008)

  27. 27.

    & Resonant X-ray scattering studies of charge order in cuprates. Ann. Rev. Cond. Matter Phys. 7, 369–405 (2016)

  28. 28.

    et al. Direct phase-sensitive identification of a d-form factor density wave in underdoped cuprates. Proc. Natl Acad. Sci. USA 111, E3026–E3032 (2014)

  29. 29.

    et al. Symmetry of charge order in cuprates. Nature Mater. 14, 796–801 (2015)

  30. 30.

    et al. The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction. Nature Comm. 6, 10064 (2015)

  31. 31.

    Possible new effects in superconductive tunneling. Phys. Lett. 1, 251–253 (1962)

  32. 32.

    & Voltage due to thermal noise in the dc Josephson effect. Phys. Rev. Lett. 22, 1364–1366 (1969); erratum 23, 274 (1969)

  33. 33.

    & The Josephson effect in small tunnel contacts. Sov. Phys. JETP 28, 1272–1276 (1969)

  34. 34.

    et al. Effect of the electromagnetic environment on the Coulomb blockade in ultrasmall tunnel junctions. Phys. Rev. Lett. 64, 1824–1827 (1990)

  35. 35.

    , & Quantum tunnelling in small-capacitance Josephson junctions in a general electromagnetic environment. Europhys. Lett. 16, 109–114 (1991)

  36. 36.

    & Classical phase diffusion in small hysteretic Josephson junctions. Phys. Rev. Lett. 63, 1507–1510 (1989)

  37. 37.

    , , , & Charging effects and quantum properties of small superconducting tunnel junctions. Phys. Rev. B 39, 6465 (1989)

  38. 38.

    , & Josephson scanning tunneling microscopy. Phys. Rev. B 64, 212506 (2001)

  39. 39.

    et al. Spectroscopic imaging scanning tunneling microscopy studies of electronic structure in the superconducting and pseudogap phases of cuprate high-Tc superconductors. J. Phys. Soc. Jpn. 81, 011005 (2012)

  40. 40.

    et al. Picometer registration of zinc impurity states in Bi2Sr2CaCu2O8+δ for phase determination in intra-unit-cell Fourier transform STM. New J. Phys. 14, 053017 (2012)

  41. 41.

    et al. Atomic-scale electronic structure of the cuprate d-symmetry form factor density wave state. Nature Phys. 12, 150–156 (2016)

  42. 42.

    et al. Simultaneous transitions in cuprate momentum-space topology and electronic symmetry breaking. Science 344, 612–616 (2014)

  43. 43.

    & Bond order in two-dimensional metals with anti-ferromagnetic exchange interactions. Phys. Rev. Lett. 111, 027202 (2013)

Download references


We acknowledge and thank D. Agterberg, A. V. Balatsky, D. Chowdhury, A. Chubukov, E. Fradkin, R. Hulet, S. A. Kivelson, P. A. Lee, M. Norman, J. W. Orenstein, C. Pepin, S. Sachdev, J. Tranquada and Y. Wang for discussions and advice. The development and operation of HTS SJTM technology and M.H.H. and A.K. were funded by the Moore Foundation’s EPiQS Initiative through grant number GBMF4544. S.D.E. acknowledges studentship funding from the EPSRC under grant number EP/G03673X/1. J.C.S.D. and A.P.M. acknowledge research support from the EPSRC through the grant programme ‘Topological Protection and Non-Equilibrium States in Correlated Electron Systems’. S.U. and H.E. acknowledge support from a Grant-in-Aid for Scientific Research from the Ministry of Science and Education (Japan). S.H.J. and J.L. acknowledge support from the Institute for Basic Science, Korea under grant number IBS-R009-D1. J.C.S.D. and K.F. acknowledge salary support from the US Department of Energy, Office of Basic Energy Sciences, under contract number DEAC02-98CH10886. E.-A.K. acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Science and Engineering under award DE-SC0010313.

Author information

Author notes

    • M. H. Hamidian
    • , S. D. Edkins
    •  & Sang Hyun Joo

    These authors contributed equally to this work.


  1. Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA

    • M. H. Hamidian
  2. Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, New York 14853, USA

    • S. D. Edkins
    • , A. Kostin
    • , M. J. Lawler
    • , E.-A. Kim
    •  & J. C. Séamus Davis
  3. School of Physics and Astronomy, University of St Andrews, Fife KY16 9SS, UK

    • S. D. Edkins
    • , A. P. Mackenzie
    •  & J. C. Séamus Davis
  4. Institute of Applied Physics, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, South Korea

    • Sang Hyun Joo
    •  & Jinho Lee
  5. Center for Correlated Electron Systems, Institute of Basic Science, Seoul 151-742, South Korea

    • Sang Hyun Joo
    •  & Jinho Lee
  6. Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan

    • H. Eisaki
    •  & S. Uchida
  7. Department of Physics, University of Tokyo, Bunkyo, Tokyo 113-0011, Japan

    • S. Uchida
  8. Department of Physics, Binghamton University, Binghamton, New York 13902-6000, USA

    • M. J. Lawler
  9. Max Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany

    • A. P. Mackenzie
  10. Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA

    • K. Fujita
    •  & J. C. Séamus Davis
  11. Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York 14853, USA

    • J. C. Séamus Davis


  1. Search for M. H. Hamidian in:

  2. Search for S. D. Edkins in:

  3. Search for Sang Hyun Joo in:

  4. Search for A. Kostin in:

  5. Search for H. Eisaki in:

  6. Search for S. Uchida in:

  7. Search for M. J. Lawler in:

  8. Search for E.-A. Kim in:

  9. Search for A. P. Mackenzie in:

  10. Search for K. Fujita in:

  11. Search for Jinho Lee in:

  12. Search for J. C. Séamus Davis in:


M.H.H., S.D.E., A.K., and J.L. developed the SJTM techniques and carried out the experiments. K.F., H.E. and S.U. synthesized and characterized the samples. M.H.H., S.D.E., A.K., S.H.J. and K.F. developed and carried out analyses. E.-A.K. and M.J.L. provided theoretical guidance. A.P.M., J.L. and J.C.S.D. supervised the project and wrote the paper with key contributions from M.H.H., S.D.E. and K.F. The manuscript reflects the contributions and ideas of all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Jinho Lee or J. C. Séamus Davis.

Extended data


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.