Letter | Published:

Measurement of the Earth tides with a MEMS gravimeter

Nature volume 531, pages 614617 (31 March 2016) | Download Citation

Abstract

The ability to measure tiny variations in the local gravitational acceleration allows, besides other applications, the detection of hidden hydrocarbon reserves, magma build-up before volcanic eruptions, and subterranean tunnels. Several technologies are available that achieve the sensitivities required for such applications (tens of microgal per hertz1/2): free-fall gravimeters1, spring-based gravimeters1,3, superconducting gravimeters4, and atom interferometers5. All of these devices can observe the Earth tides6: the elastic deformation of the Earth’s crust as a result of tidal forces. This is a universally predictable gravitational signal that requires both high sensitivity and high stability over timescales of several days to measure. All present gravimeters, however, have limitations of high cost (more than 100,000 US dollars) and high mass (more than 8 kilograms). Here we present a microelectromechanical system (MEMS) device with a sensitivity of 40 microgal per hertz1/2 only a few cubic centimetres in size. We use it to measure the Earth tides, revealing the long-term stability of our instrument compared to any other MEMS device. MEMS accelerometers—found in most smart phones7—can be mass-produced remarkably cheaply, but none are stable enough to be called a gravimeter. Our device has thus made the transition from accelerometer to gravimeter. The small size and low cost of this MEMS gravimeter suggests many applications in gravity mapping. For example, it could be mounted on a drone instead of low-flying aircraft for distributed land surveying and exploration, deployed to monitor volcanoes, or built into multi-pixel density-contrast imaging arrays.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Uncertainty of absolute gravity measurements. J. Geophys. Res. 110, B05406 (2005)

  2. 2.

    et al. Relative gravity measurement campaign during the 8th international comparison of absolute gravimeters (2009). Metrologia 49, 95–107 (2012)

  3. 3.

    Accuracy of the relative gravity measurement. Acta Geodyn. Geomater. 6, 383–390 (2009)

  4. 4.

    The superconducting gravimeter. Rev. Sci. Instrum. 70, 4131–4152 (1999)

  5. 5.

    et al. Precision gravimetry with atomic sensors. Meas. Sci. Technol. 20, 022001 (2009)

  6. 6.

    Earth tides, ocean tides and tidal loading. Phil. Trans. R. Soc. A 274, 253–259 (1973)

  7. 7.

    & Suitability of low-cost three-axis MEMS accelerometers in strong-motion seismology: tests on the LIS331DLH (iPhone) accelerometer. Bull. Seismol. Soc. Am. 103, 2906–2913 (2013)

  8. 8.

    et al. In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sens. Actuat. A. 145–146, 283–290 (2008)

  9. 9.

    & A high-sensitivity MEMS-based accelerometer. Leading Edge 33, 1234–1242 (2014)

  10. 10.

    et al. A self-levelling nano-g silicon seismometer. In Proc. IEEE Sensors 2014 1599–1602, (IEEE, 2014)

  11. 11.

    , , & Seismic noise filters, vertical resonance frequency reduction with geometric anti-springs: a feasibility study. Nucl. Instrum. Meth. A 435, 475–483 (1999)

  12. 12.

    et al. Seismic attenuation performance of the first prototype of a geometric antispring filter. Nucl. Instrum. Meth. A 487, 652–660 (2002)

  13. 13.

    , & A silicon microseismometer for Mars. In Transducers and Eurosensors XXVII 622–625, (IEEE, 2013)

  14. 14.

    et al. Sensors and actuators for the Advanced LIGO mirror suspensions. Class. Quantum Gravity 29, 115005 (2012)

  15. 15.

    , & Experimental results for nulling the effective thermal expansion coefficient of fused silica fibres under a static stress. Class. Quantum Gravity 31, 065010 (2014)

  16. 16.

    , & Linear thermal expansion coefficient of silicon from 293 to 1000 K. Int. J. Thermophys. 25, 221–236 (2004)

  17. 17.

    , , & A method for calculating the spring constant of atomic force microscopy cantilevers with a nonrectangular cross section. Anal. Chem. 77, 1192–1195 (2005)

  18. 18.

    Characterization of Young’s modulus of silicon versus temperature using a “beam deflection” method with a four-point bending fixture. Curr. Appl. Phys. 9, 538–545 (2009)

  19. 19.

    & Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput. Geosci. 31, 631–640 (2005)

  20. 20.

    & Irreversibility and generalized noise. Phys. Rev. 83, 34–40 (1951)

  21. 21.

    , , , & Low frequency vertical geometric anti-spring vibration isolators. Phys. Lett. A 336, 97–105 (2005)

  22. 22.

    , , & Volcanic signatures in time gravity variations during the volcanic unrest on El Hierro (Canary Islands). J. Geophys. Res. 119, 5033–5051 (2014)

  23. 23.

    Relations between the eruptions of various volcanoes and the deformations of the ground surfaces around them. Bull. Earthq. Res. Inst. 36, 99–134 (1958)

  24. 24.

    , , & 4D volcano gravimetry. Geophysics 73, WA3–WA18 (2008)

  25. 25.

    , & Gravity and deformation measurements. Geophys. Res. Lett. 27, 2389–2392 (2000)

  26. 26.

    Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966)

  27. 27.

    Observations and modeling of seismic background noise. US Geological Survey Open-file Report Number 93-322, (USGS, 1993)

  28. 28.

    , , & On the generation of secondary micro-seisms observed in northern and central Europe. J. Geophys. Res. 108, 2506–2520 (2003)

  29. 29.

    & Deaths and injuries in the eruption of Galeras volcano, Colombia, 14 January 1993. J. Volcanol. Geotherm. Res. 77, 325–338 (1997)

  30. 30.

    , & Comparison of the Micro-g LaCoste gPhone-054 spring gravimeter and the GWR-C026 superconducting gravimeter in Strasbourg (France) using a 300-day time series. Metrologia 48, 28–39 (2011)

  31. 31.

    Analysis of sidewall quality in through-wafer deep reactive-ion etching. Microelectron. Eng. 73–74, 340–345 (2004)

  32. 32.

    & Method of anisotropic etching of silicon. US patent number 5,501,893 (1996)

  33. 33.

    & Advantages of borehole vector gravity in density imaging. Geophysics 80, G1–G13 (2015)

  34. 34.

    , & Informing hydrological models with ground-based time-lapse relative gravimetry: potential and limitations. In Proc. Symp. J-H01 (GRACE, Remote Sensing and Ground-based Methods in Multi-Scale Hydrology) 187–194 (IAHS Publ. 343, 2011)

  35. 35.

    et al. A comparison of gravimetric techniques for measuring subsurface void signals. J. Phys. D 34, 433–443 (2001)

  36. 36.

    Microgravimetric and gravity gradient techniques for detection of subsurface cavities. Geophysics 49, 1084–1096 (1984)

  37. 37.

    , & Imaging cargo containers using gravity gradiometry. IEEE Trans. Geosci. Remote Sens. 45, 1786–1797 (2007)

Download references

Acknowledgements

The work was funded by the Royal Society Paul Instrument Fund and STFC grant number ST/M000427/1. We thank M. Pitkin for advice on completing statistical significance tests on the data, W. Cunningham for advice on finite element modelling, M. Perreur-Lloyd and R. Jones for their help in rendering three-dimensional images of the apparatus, and the staff and other users of the James Watt Nanofabrication Centre for help and support in undertaking the MEMS fabrication.

Author information

Affiliations

  1. Scottish Universities Physics Alliance (SUPA), University of Glasgow, School of Physics and Astronomy, Kelvin Building, University Avenue, Glasgow G12 8QQ, UK

    • R. P. Middlemiss
    • , A. Samarelli
    • , J. Hough
    • , S. Rowan
    •  & G. D. Hammond
  2. University of Glasgow, School of Engineering, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, UK

    • R. P. Middlemiss
    •  & D. J. Paul

Authors

  1. Search for R. P. Middlemiss in:

  2. Search for A. Samarelli in:

  3. Search for D. J. Paul in:

  4. Search for J. Hough in:

  5. Search for S. Rowan in:

  6. Search for G. D. Hammond in:

Contributions

R.P.M. led the methodology of the etch process for the MEMS gravimeter and worked with G.D.H. on the development of the MEMS gravimeter. G.D.H. and R.P.M. enhanced the long-term, low-noise stability of the entire system, taking the tide data and performing the computational analysis. R.P.M. led writing the manuscript. A.S. led the methodology of the MEMS mask fabrication. A.S. and R.P.M. took the tide measurements in early 2015 and performed computational analysis of the MEMS gravimeter. D.J.P. supervised the design of the MEMS device fabrication process and with G.D.H. came up with the concept for a MEMS gravity sensor. J.H. developed the methodology of utilizing geometric anti-springs for the MEMS gravimeter system and commented on the manuscript. S.R. was responsible for the resources that were necessary to complete the project and commented on the manuscript. G.D.H. had the initial concept of a MEMS gravimeter together with D.J.P. G.D.H. had oversight of the design, fabrication and testing of the gravimeter (via the supervision of R.P.M. and A.S.). R.P.M. and G.D.H. characterized and enhanced the low noise performance, resulting in the measurement of the tides. G.D.H. was responsible for acquiring the funding for the work.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to R. P. Middlemiss or G. D. Hammond.

The research data relevant to this Letter are stored on the University of Glasgow’s Enlighten Repository (http://dx.doi.org/10.5525/gla.researchdata.213).

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature17397

Further reading

  • SEIS: Insight’s Seismic Experiment for Internal Structure of Mars

    • P. Lognonné
    • , W. B. Banerdt
    • , D. Giardini
    • , W. T. Pike
    • , U. Christensen
    • , P. Laudet
    • , S. de Raucourt
    • , P. Zweifel
    • , S. Calcutt
    • , M. Bierwirth
    • , K. J. Hurst
    • , F. Ijpelaan
    • , J. W. Umland
    • , R. Llorca-Cejudo
    • , S. A. Larson
    • , R. F. Garcia
    • , S. Kedar
    • , B. Knapmeyer-Endrun
    • , D. Mimoun
    • , A. Mocquet
    • , M. P. Panning
    • , R. C. Weber
    • , A. Sylvestre-Baron
    • , G. Pont
    • , N. Verdier
    • , L. Kerjean
    • , L. J. Facto
    • , V. Gharakanian
    • , J. E. Feldman
    • , T. L. Hoffman
    • , D. B. Klein
    • , K. Klein
    • , N. P. Onufer
    • , J. Paredes-Garcia
    • , M. P. Petkov
    • , J. R. Willis
    • , S. E. Smrekar
    • , M. Drilleau
    • , T. Gabsi
    • , T. Nebut
    • , O. Robert
    • , S. Tillier
    • , C. Moreau
    • , M. Parise
    • , G. Aveni
    • , S. Ben Charef
    • , Y. Bennour
    • , T. Camus
    • , P. A. Dandonneau
    • , C. Desfoux
    • , B. Lecomte
    • , O. Pot
    • , P. Revuz
    • , D. Mance
    • , J. tenPierick
    • , N. E. Bowles
    • , C. Charalambous
    • , A. K. Delahunty
    • , J. Hurley
    • , R. Irshad
    • , Huafeng Liu
    • , A. G. Mukherjee
    • , I. M. Standley
    • , A. E. Stott
    • , J. Temple
    • , T. Warren
    • , M. Eberhardt
    • , A. Kramer
    • , W. Kühne
    • , E.-P. Miettinen
    • , M. Monecke
    • , C. Aicardi
    • , M. André
    • , J. Baroukh
    • , A. Borrien
    • , A. Bouisset
    • , P. Boutte
    • , K. Brethomé
    • , C. Brysbaert
    • , T. Carlier
    • , M. Deleuze
    • , J. M. Desmarres
    • , D. Dilhan
    • , C. Doucet
    • , D. Faye
    • , N. Faye-Refalo
    • , R. Gonzalez
    • , C. Imbert
    • , C. Larigauderie
    • , E. Locatelli
    • , L. Luno
    • , J.-R. Meyer
    • , F. Mialhe
    • , J. M. Mouret
    • , M. Nonon
    • , Y. Pahn
    • , A. Paillet
    • , P. Pasquier
    • , G. Perez
    • , R. Perez
    • , L. Perrin
    • , B. Pouilloux
    • , A. Rosak
    • , I. Savin de Larclause
    • , J. Sicre
    • , M. Sodki
    • , N. Toulemont
    • , B. Vella
    • , C. Yana
    • , F. Alibay
    • , O. M. Avalos
    • , M. A. Balzer
    • , P. Bhandari
    • , E. Blanco
    • , B. D. Bone
    • , J. C. Bousman
    • , P. Bruneau
    • , F. J. Calef
    • , R. J. Calvet
    • , S. A. D’Agostino
    • , G. de los Santos
    • , R. G. Deen
    • , R. W. Denise
    • , J. Ervin
    • , N. W. Ferraro
    • , H. E. Gengl
    • , F. Grinblat
    • , D. Hernandez
    • , M. Hetzel
    • , M. E. Johnson
    • , L. Khachikyan
    • , J. Y. Lin
    • , S. M. Madzunkov
    • , S. L. Marshall
    • , I. G. Mikellides
    • , E. A. Miller
    • , W. Raff
    • , J. E. Singer
    • , C. M. Sunday
    • , J. F. Villalvazo
    • , M. C. Wallace
    • , D. Banfield
    • , J. A. Rodriguez-Manfredi
    • , C. T. Russell
    • , A. Trebi-Ollennu
    • , J. N. Maki
    • , E. Beucler
    • , M. Böse
    • , C. Bonjour
    • , J. L. Berenguer
    • , S. Ceylan
    • , J. Clinton
    • , V. Conejero
    • , I. Daubar
    • , V. Dehant
    • , P. Delage
    • , F. Euchner
    • , I. Estève
    • , L. Fayon
    • , L. Ferraioli
    • , C. L. Johnson
    • , J. Gagnepain-Beyneix
    • , M. Golombek
    • , A. Khan
    • , T. Kawamura
    • , B. Kenda
    • , P. Labrot
    • , N. Murdoch
    • , C. Pardo
    • , C. Perrin
    • , L. Pou
    • , A. Sauron
    • , D. Savoie
    • , S. Stähler
    • , E. Stutzmann
    • , N. A. Teanby
    • , J. Tromp
    • , M. van Driel
    • , M. Wieczorek
    • , R. Widmer-Schnidrig
    •  & J. Wookey

    Space Science Reviews (2019)

  • Distortion-free measurement of electric field strength with a MEMS sensor

    • Andreas Kainz
    • , Harald Steiner
    • , Johannes Schalko
    • , Artur Jachimowicz
    • , Franz Kohl
    • , Michael Stifter
    • , Roman Beigelbeck
    • , Franz Keplinger
    •  & Wilfried Hortschitz

    Nature Electronics (2018)

  • Measurement of the Thermal Expansion Coefficient for Ultra-High Temperatures up to 3000 K

    • T. A. Kompan
    • , S. V. Kondratiev
    • , A. S. Korenev
    • , N. F. Puhov
    • , F. M. Inochkin
    • , S. K. Kruglov
    •  & I. G. Bronshtein

    International Journal of Thermophysics (2018)

  • Review of smartphone applications for geoscience: current status, limitations, and future perspectives

    • Sangho Lee
    • , Jangwon Suh
    •  & Yosoon Choi

    Earth Science Informatics (2018)

  • Zero-power infrared digitizers based on plasmonically enhanced micromechanical photoswitches

    • Zhenyun Qian
    • , Sungho Kang
    • , Vageeswar Rajaram
    • , Cristian Cassella
    • , Nicol E. McGruer
    •  & Matteo Rinaldi

    Nature Nanotechnology (2017)

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.