Post-invasion demography of prehistoric humans in South America

Abstract

As the last habitable continent colonized by humans, the site of multiple domestication hotspots, and the location of the largest Pleistocene megafaunal extinction, South America is central to human prehistory1,2,3,4,5,6,7. Yet remarkably little is known about human population dynamics during colonization, subsequent expansions, and domestication2,3,4,5. Here we reconstruct the spatiotemporal patterns of human population growth in South America using a newly aggregated database of 1,147 archaeological sites and 5,464 calibrated radiocarbon dates spanning fourteen thousand to two thousand years ago (ka). We demonstrate that, rather than a steady exponential expansion, the demographic history of South Americans is characterized by two distinct phases. First, humans spread rapidly throughout the continent, but remained at low population sizes for 8,000 years, including a 4,000-year period of ‘boom-and-bust’ oscillations with no net growth. Supplementation of hunting with domesticated crops and animals4,8 had a minimal impact on population carrying capacity. Only with widespread sedentism, beginning ~5 ka4,8, did a second demographic phase begin, with evidence for exponential population growth in cultural hotspots, characteristic of the Neolithic transition worldwide9. The unique extent of humanity’s ability to modify its environment to markedly increase carrying capacity in South America is therefore an unexpectedly recent phenomenon.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Archaeological sites in database.
Figure 2: Kernel density maps of occupied area.
Figure 3: Climatic and radiocarbon records for 14 ka to 2 ka.
Figure 4: A two-phase model for the human invasion of South America.

References

  1. 1

    Meltzer, D. J. First Peoples in a New World: Colonizing Ice Age America (Univ. California Press, 2009)

  2. 2

    Raghavan, M. et al. Genomic evidence for the Pleistocene and recent population history of Native Americans. Science 349, aab3884 (2015)

    Article  Google Scholar 

  3. 3

    Dillehay, T. D. Probing deeper into first American studies. Proc. Natl Acad. Sci. USA 106, 971–978 (2009)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Moore, J. D. A Prehistory of South America: Ancient Cultural Diversity on the Least Known Continent (Univ. Press of Colorado, 2014)

  5. 5

    Rothhammer, F. & Dillehay, T. D. The late Pleistocene colonization of South America: an interdisciplinary perspective. Ann. Hum. Genet. 73, 540–549 (2009)

    Article  Google Scholar 

  6. 6

    Reich, D. et al. Reconstructing Native American population history. Nature 488, 370–374 (2012)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of Late Pleistocene extinctions on the continents. Science 306, 70–75 (2004)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Silverman, H. & Isbell, W. Handbook of South American Archaeology (Springer, 2008)

  9. 9

    Bocquet-Appel, J. P. & Bar-Yosef, O. (eds) The Neolithic Demographic Transition and its Consequences (Springer, 2008)

  10. 10

    Sandweiss, D. H., Solís, R. S., Moseley, M. E., Keefer, D. K. & Ortloff, C. R. Environmental change and economic development in coastal Peru between 5,800 and 3,600 years ago. Proc. Natl Acad. Sci. USA 106, 1359–1363 (2009)

    CAS  ADS  Article  Google Scholar 

  11. 11

    Marquet, P. A., Santoro, C. M., Latorre, C., Standen, V. G. & Abades, S. R. Emergence of social complexity among coastal hunter-gatherers in the Atacama Desert of northern Chile. Proc. Natl Acad. Sci. USA 109, 14754–14760 (2012)

    CAS  ADS  Article  Google Scholar 

  12. 12

    Shennan, S. et al. Regional population collapse followed initial agriculture booms in mid-Holocene Europe. Nature Commun. 4, 2486 (2013)

    ADS  Article  Google Scholar 

  13. 13

    Rick, J. W. Dates as data: an examination of the Peruvian preceramic radiocarbon record. Am. Antiq. 52, 55–73 (1987)

    Article  Google Scholar 

  14. 14

    Williams, A. N. The use of summed radiocarbon probability distributions in archaeology: a review of methods. J. Archaeol. Sci. 39, 578–589 (2012)

    Article  Google Scholar 

  15. 15

    Peros, M. C., Munoz, S. E., Gajewski, K. & Viau, A. E. Prehistoric demography of North America inferred from radiocarbon data. J. Archaeol. Sci. 37, 656–664 (2010)

    Article  Google Scholar 

  16. 16

    Mellars, P. & French, J. S. Tenfold population increase in Western Europe at the Neandertal-to-modern human transition. Science 333, 623–627 (2011)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Barnosky, A. D. et al. The variable impact of Late-Quaternary megafaunal extinction in causing ecological state shifts in North and South America. Proc. Natl Acad. Sci. USA 113, 856–861 (2016)

    CAS  ADS  Article  Google Scholar 

  18. 18

    Boone, J. L. Subsistence strategies and early human population history: An evolutionary ecological perspective. World Archaeol. 34, 6–25 (2002)

    Article  Google Scholar 

  19. 19

    Haub, C. How many people have ever lived on earth? Popul. Today 23, 4–5 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Keinan, A. & Clark, A. G. Recent explosive human population growth has resulted in an excess of rare genetic variants. Science 336, 740–743 (2012)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Gazave, E. et al. Neutral genomic regions refine models of recent rapid human population growth. Proc. Natl Acad. Sci. USA 111, 757–762 (2014)

    CAS  ADS  Article  Google Scholar 

  22. 22

    Cohen, J. E. How Many People Can The Earth Support? (W.W. Norton & Company, 1995)

  23. 23

    Kingsland, S. The refractory model: the logistic curve and the history of population ecology. Q. Rev. Biol. 57, 29–52 (1982)

    Article  Google Scholar 

  24. 24

    Sibly, R. M. & Hone, J. Population growth rate and its determinants: an overview. Phil. Trans. R. Soc. B 357, 1153–1170 (2002)

    Article  Google Scholar 

  25. 25

    Arim, M., Abades, S. R., Neill, P. E., Lima, M. & Marquet, P. A. Spread dynamics of invasive species. Proc. Natl Acad. Sci. USA 103, 374–378 (2006)

    CAS  ADS  Article  Google Scholar 

  26. 26

    Kelly, R. L., Surovell, T. A., Shuman, B. N. & Smith, G. M. A continuous climatic impact on Holocene human population in the Rocky Mountains. Proc. Natl Acad. Sci. USA 110, 443–447 (2013)

    CAS  ADS  Article  Google Scholar 

  27. 27

    Hassan, F. A. Demographic Archaeology in Studies in Archeology (Academic Press, 1981)

  28. 28

    Anderson, D. G., Maasch, K. & Sandweiss, D. H. (eds) Climate Change and Cultural Dynamics: a Global Perspective on Mid-Holocene Transitions (Academic Press, 2011)

  29. 29

    Henrich, J. Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses: the Tasmanian case. Am. Antiq. 69, 197–214 (2004)

    Article  Google Scholar 

  30. 30

    Pinhasi, R., Fort, J. & Ammerman, A. J. Tracing the origin and spread of agriculture in Europe. PLoS Biol. 3, e410 (2005)

    Article  Google Scholar 

  31. 31

    Ramsey, C. B. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009)

    CAS  Article  Google Scholar 

  32. 32

    Hogg, A. G. et al. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal bp. Radiocarbon 55, 1889–1903 (2013)

    CAS  Article  Google Scholar 

  33. 33

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55, 1869–1887 (2013)

    CAS  Google Scholar 

  34. 34

    Gayo, E. M., Latorre, C. & Santoro, C. M. Timing of occupation and regional settlement patterns revealed by time-series analyses of an archaeological radiocarbon database for the South-Central Andes (16°–25° S). Quat. Int. 356, 4–14 (2015)

    Article  Google Scholar 

  35. 35

    Thompson, L. G. et al. A 25,000 year tropical climate history from Bolivian ice cores. Science 282, 1858–1864 (1998)

    CAS  ADS  Article  Google Scholar 

  36. 36

    Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    CAS  ADS  Article  Google Scholar 

  37. 37

    ArcGIS Version 10 (Redlands CA: Environmental Systems Research Institute Inc., 2010)

  38. 38

    Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman & Hall, London, 1986)

  39. 39

    Epanechnikov, V. A. Non-parametric estimation of a multivariate probability density. Theory Probab. Appl. 14, 153–158 (1969)

    MathSciNet  Article  Google Scholar 

  40. 40

    Wand, M. P. & Jones, M. C. Kernel Smoothing (Crc Press, 1994)

  41. 41

    Chaput, M. A. et al. Spatiotemporal distribution of Holocene populations in North America. Proc. Natl Acad. Sci. USA 112, 12127–12132 (2015)

    CAS  ADS  Article  Google Scholar 

  42. 42

    Brown, W. A. Through a filter, darkly: population size estimation, systematic error, and random error in radiocarbon-supported demographic temporal frequency analysis. J. Archaeol. Sci. 53, 133–147 (2015)

    Article  Google Scholar 

  43. 43

    Hinz, M., Feeser, I., Sjögren, K. G. & Müller, J. Demography and the intensity of cultural activities: an evaluation of Funnel Beaker Societies (4200–2800 cal bc). J. Archaeol. Sci. 39, 3331–3340 (2012)

    CAS  Article  Google Scholar 

  44. 44

    Downey, S. S., Bocaege, E., Keri, T. E., Edinborough, K. & Shennan, S. The Neolithic demographic transition in Europe: correlation with juvenility index supports interpretation of the summed calibrated radiocarbon date probability distribution (SCDPD) as a valid demographic proxy. PLoS ONE 9, e105730 (2014)

    ADS  Article  Google Scholar 

  45. 45

    Woodbridge, J. et al. The impact of the Neolithic agricultural transition in Britain: a comparison of pollen-based land-cover and archaeological 14C date-inferred population change. J. Archaeol. Sci. 51, 216–224 (2014)

    Article  Google Scholar 

  46. 46

    Contreras, D. A. & Meadows, J. Summed radiocarbon calibrations as a population proxy: a critical evaluation using a realistic simulation approach. J. Archaeol. Sci. 52, 591–608 (2014)

    Article  Google Scholar 

  47. 47

    Michczynska, D. & Pazdur, A. Shape analysis of cumulative probability density function of radiocarbon dates set in the study of climate change in the Late Glacial and Holocene. Radiocarbon 46, 733–744 (2004)

    Article  Google Scholar 

  48. 48

    Michczynska, D. J., Michczynska, A. & Pazdur, A. Frequency distribution of radiocarbon dates as a tool for reconstructing environmental changes. Radiocarbon 49, 799–806 (2007)

    CAS  Article  Google Scholar 

  49. 49

    Surovell, T. A., Finley, J. B., Smith, G. M., Brantingham, P. J. & Kelly, R. Correcting temporal frequency distributions for taphonomic bias. J. Archaeol. Sci. 36, 1715–1724 (2009)

    Article  Google Scholar 

  50. 50

    Reimer, P. J. et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal bp. Radiocarbon 55, 1869–1887 (2013)

    CAS  Article  Google Scholar 

  51. 51

    Ogburn D. E. Reconceiving the chronology of Inca imperial expansion. Radiocarbon 54, 219–237 (2012)

    Article  Google Scholar 

  52. 52

    Seidel, D. J., Fu, Q., Randel, W. J. & Reichler, T. J. Widening of the tropical belt in a changing climate. Nature Geosci. 1, 21–24 (2008)

    CAS  ADS  Article  Google Scholar 

  53. 53

    MATLAB Release 2015a (The MathWorks, Natick, Massachusetts, USA)

  54. 54

    Schwarz, G. E. Estimating the dimension of a model. Ann. Stat. 6, 461–464 (1978)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

We thank A. Barnosky, J. Kang, N. Rosenberg, E. Lindsey, N. Villavicencio, L. Frishkoff, K. Solari, J. Hsu, and H. Frank for conversations and feedback on the paper, as well as E. Jewett and M. Edge for discussions of statistical methods. We also greatly appreciate assistance from the Stanford Geospatial Center. This work was stimulated by discussions of an NSF-funded group (EAR 1148181) comparing the timing of megafaunal extinctions with archeological and palaeoenvironmental data in South America. We acknowledge support from NSF grant BCS 1515127, as well as NSF Graduate Research and ARCS fellowships to A.G., a Stanford Interdisciplinary Graduate Fellowship to A.M.M, and a Gabilan Fellowship to E.A.H. Radiocarbon data and associated information are available in the Supplementary Information.

Author information

Affiliations

Authors

Contributions

A.G. conducted analyses and wrote the first draft of the paper. A.M.M. collected and collated the database, and conducted ArcGIS analyses. E.A.H. advised the analyses and initiated the project. All authors interpreted results, and contributed to framing and editing of the paper.

Corresponding author

Correspondence to Amy Goldberg.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Kernel Density estimates of occupied area for alternative time bins.

Estimates of occupied area in 1,000-year time bins for dates not present in Fig. 2, considering uniquely occupied sites in each time bin.

Extended Data Figure 2 Kernel Density estimates of occupied area for fixed search radius.

Estimates of occupied area in 1,000-year time bins for dates present in Fig. 2, using a fixed radius for all time slices of 660 km.

Extended Data Figure 3 Statistical evaluation of constant population size in the mid-Holocene.

The simulated 98% confidence interval (grey) for radiocarbon density under a constant population size in 5-year bins, with the observed SCPD for the data (black).

Extended Data Figure 4 Observed oscillations are outside the variation of simulated constant size.

A histogram of the variance of 200 simulated constant size SCPDs, with the observed variance of density in the observed SCPD from 9 to 5.5 ka outside the distribution of those simulated.

Extended Data Figure 5 Inferred population size over time.

Assuming colonization of South America 14.8 ka by a population of size N0, we plot the relative increase in population size over time under the two-phase model (black). Carrying capacity (grey) occurs approximately 8.5 ka with a relative population size N/N0 = 274.6, and a final population size at 2 ka of N/N0 = 616.6.

Extended Data Figure 6 SCPD for Andean/Pacific Coastal Region.

The Pacific Coast region and Andes, which represents 52% of dates and multiple of the major cultural centres, show a similar trend as the SCPD for the continent.

Extended Data Table 1 Model likelihoods and model choice

Supplementary information

Supplementary Data

This file contains Supplementary Dataset 1. (XLSX 471 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goldberg, A., Mychajliw, A. & Hadly, E. Post-invasion demography of prehistoric humans in South America. Nature 532, 232–235 (2016). https://doi.org/10.1038/nature17176

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing