The global spectrum of plant form and function

Abstract

Earth is home to a remarkable diversity of plant forms and life histories, yet comparatively few essential trait combinations have proved evolutionarily viable in today’s terrestrial biosphere. By analysing worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled, we found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs. Three-quarters of trait variation is captured in a two-dimensional global spectrum of plant form and function. One major dimension within this plane reflects the size of whole plants and their parts; the other represents the leaf economics spectrum, which balances leaf construction costs against growth potential. The global plant trait spectrum provides a backdrop for elucidating constraints on evolution, for functionally qualifying species and ecosystems, and for improving models that predict future vegetation based on continuous variation in plant form and function.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The volume in trait space occupied by vascular plant species is strongly constrained compared to theoretical null models.
Figure 2: The global spectrum of plant form and function.

References

  1. 1

    Schimper, A. Plant-geography upon a Physiological Basis (Oxford Univ. Press, 1903)

  2. 2

    Warming, E. Ecology of Plants (Clarendon, 1909)

  3. 3

    Grime, J. P. Vegetation classification by reference to strategies. Nature 250, 26–31 (1974)

    ADS  Google Scholar 

  4. 4

    Southwood, T. R. E. Habitat, the templet for ecological strategies? J. Anim. Ecol. 46, 337–365 (1977)

    Google Scholar 

  5. 5

    Chapin, F. S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 11, 233–260 (1980)

    CAS  Google Scholar 

  6. 6

    Niklas, K. J. The Evolutionary Biology of Plants (Univ. of Chicago Press, 1997)

  7. 7

    Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997)

    ADS  CAS  Google Scholar 

  8. 8

    Ackerly, D. Functional strategies of chaparral shrubs in relation to seasonal water deficit and disturbance. Ecol. Monogr. 74, 25–44 (2004)

    Google Scholar 

  9. 9

    Field, C. H. & Mooney, H. A. in On the Economy of Plant Form and Function (ed. Givnish, T. J. ) pp. 25–49 (Cambridge Univ. Press, 1986)

  10. 10

    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004)

    ADS  CAS  Google Scholar 

  11. 11

    Pierce, S., Brusa, G., Vagge, I. & Cerabolini, B. E. L. Allocating CSR plant functional types: the use of leaf economics and size traits to classify woody and herbaceous vascular plants. Funct. Ecol. 27, 1002–1010 (2013)

    Google Scholar 

  12. 12

    Li, L. et al. Leaf economics and hydraulic traits are decoupled in five species-rich tropical-subtropical forests. Ecol. Lett. 18, 899–906 (2015)

    CAS  Google Scholar 

  13. 13

    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009)

    Google Scholar 

  14. 14

    Zanne, A. E. et al. Angiosperm wood structure: Global patterns in vessel anatomy and their relation to wood density and potential conductivity. Am. J. Bot. 97, 207–215 (2010)

    Google Scholar 

  15. 15

    Salisbury, E. Seed size and mass in relation to environment. Proc. R. Soc. B 186, 83–88 (1974)

    ADS  Google Scholar 

  16. 16

    Thompson, K. Seeds and Seed Banks. New Phytol. 106, 23–34 (1987)

    Google Scholar 

  17. 17

    Moles, A. T., Falster, D. S., Leishman, M. R. & Westoby, M. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. J. Ecol. 92, 384–396 (2004)

    Google Scholar 

  18. 18

    Lambers, H. & Poorter, H. Inherent variation in growth rate between higher plants: a search for physiological causes and ecological consequences. Adv. Ecol. Res. 23, 187–261 (1992)

    CAS  Google Scholar 

  19. 19

    Grime, J. P. et al. Integrated screening validates primary axes of specialisation in plants. Oikos 79, 259–281 (1997)

    Google Scholar 

  20. 20

    Díaz, S. et al. The plant traits that drive ecosystems: evidence from three continents. J. Veg. Sci. 15, 295–304 (2004)

    Google Scholar 

  21. 21

    Wright, I. J. et al. Relationships among ecologically important dimensions of plant trait variation in seven neotropical forests. Ann. Bot. 99, 1003–1015 (2007)

    Google Scholar 

  22. 22

    Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908–1920 (2008)

    CAS  Google Scholar 

  23. 23

    Baraloto, C. et al. Decoupled leaf and stem economics in rain forest trees. Ecol. Lett. 13, 1338–1347 (2010)

    Google Scholar 

  24. 24

    Laughlin, D. C., Leppert, J. J., Moore, M. M. & Sieg, C. H. A multi‐trait test of the leaf‐height‐seed plant strategy scheme with 133 species from a pine forest flora. Funct. Ecol. 24, 493–501 (2010)

    Google Scholar 

  25. 25

    Freschet, G. T., Cornelissen, J. H. C., Van Logtestijn, R. S. P. & Aerts, R. Evidence of the ‘plant economics spectrum’in a subarctic flora. J. Ecol. 98, 362–373 (2010)

    Google Scholar 

  26. 26

    Patiño, S. et al. Coordination of physiological and structural traits in Amazon forest trees. Biogeosciences 9, 775–801 (2012)

    ADS  Google Scholar 

  27. 27

    Pierce, S., Bottinelli, A., Bassani, I., Ceriani, R. M. & Cerabolini, B. E. L. How well do seed production traits correlate with leaf traits, whole-plant traits and plant ecological strategies? Plant Ecol. 215, 1351–1359 (2014)

    Google Scholar 

  28. 28

    Price, C. A. et al. Are leaf functional traits ‘invariant’ with plant size and what is ‘invariance’ anyway? Funct. Ecol. 28, 1330–1343 (2014)

    Google Scholar 

  29. 29

    Cornwell, W. K. et al. Functional distinctiveness of major plant lineages. J. Ecol. 102, 345–356 (2014)

    Google Scholar 

  30. 30

    Kattge, J. et al. TRY–a global database of plant traits. Glob. Change Biol. 17, 2905–2935 (2011)

    ADS  Google Scholar 

  31. 31

    Weiher, E. et al. Challenging Theophrastus: a common core list of plant traits for functional ecology. J. Veg. Sci. 10, 609–620 (1999)

    Google Scholar 

  32. 32

    Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002)

    Google Scholar 

  33. 33

    Garnier, E., Navas, M. & Grigulis, K. Plant Functional Diversity - Organism Traits, Community Structure, and Ecosystem Properties (Oxford Univ. Press, 2016)

  34. 34

    Cornwell, W. K., Schwilk, L. D. & Ackerly, D. D. A trait-based test for habitat filtering: convex hull volume. Ecology 87, 1465–1471 (2006)

    Google Scholar 

  35. 35

    Leimar, O. Evolutionary change and Darwinian demons. Evolution 2, 65–72 (2001)

    Google Scholar 

  36. 36

    Coley, P. D., Bryant, J. P. & Chapin, F. S. III. Resource availability and plant antiherbivore defense. Science 230, 895–899 (1985)

    ADS  CAS  Google Scholar 

  37. 37

    Theophrastus. Enquiry into Plants and Minor Works on Odours and Weather Signs (translated by Hort, A. F ) (Heinemann, 1916)

  38. 38

    Haig, D. & Westoby, M. Seed size, pollination costs and angiosperm success. Evol. Ecol. 5, 231–247 (1991)

    Google Scholar 

  39. 39

    Lord, J. M. & Westoby, M. Accessory costs of seed production and the evolution of angiosperms. Evolution 66, 200–210 (2012)

    Google Scholar 

  40. 40

    Eriksson, O., Friis, E. M. & Löfgren, P. Seed size, fruit size and dispersal spectra in angiosperms from the Early Cretaceous to the Late Tertiary. Am. Nat. 156, 47–58 (2000)

    Google Scholar 

  41. 41

    Boyce, C. K., Brodribb, T. J., Feild, T. S. & Zwieniecki, M. A. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proc. R. Soc. B 276, 1771–1776 (2009)

    Google Scholar 

  42. 42

    Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. Camb. Philos. Soc. 52, 107–145 (1977)

    Google Scholar 

  43. 43

    Grubb, P. J. in The Population Structure of Vegetation (ed. White, J. ) pp. 595–621 (Springer, 1985)

  44. 44

    Grime, J. P. Declining plant diversity: empty niches or functional shifts? J. Veg. Sci. 13, 457–460 (2002)

    Google Scholar 

  45. 45

    MacArthur, R. H. & Wilson, E. O. The Theory of Island Biogeography (Princeton Univ. Press, 1967)

  46. 46

    Greenslade, P. Adversity selection and the habitat templet. Am. Nat. 122, 352–365 (1983)

    Google Scholar 

  47. 47

    van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2014)

    ADS  CAS  Google Scholar 

  48. 48

    Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013)

    Google Scholar 

  49. 49

    Harfoot, M. B. J. et al. Emergent global patterns of ecosystem structure and function from a mechanistic general ecosystem model. PLoS Biol. 12, e1001841 (2014)

    PubMed  PubMed Central  Google Scholar 

  50. 50

    Gaudet, C. L. & Keddy, P. A. A comparative approach to predicting competitive ability from plant traits. Nature 334, 242–243 (1988)

    ADS  Google Scholar 

  51. 51

    Westoby, M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil 199, 213–227 (1998)

    CAS  Google Scholar 

  52. 52

    Muller-Landau, H. C., Wright, S. J., Calderón, O., Condit, R. & Hubbell, S. P. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecol. 96, 653–667 (2008)

    Google Scholar 

  53. 53

    Moles, A. T. et al. Global patterns in plant height. J. Ecol. 97, 923–932 (2009)

    Google Scholar 

  54. 54

    Niklas, K. J. Influence of tissues density-specific mechanical-properties on the scaling of plant height. Ann. Bot. 72, 173–179 (1993)

    Google Scholar 

  55. 55

    Donoghue, M. J. Key innovations, convergence, and success: macroevolutionary lessons from plant phylogeny. Paleobiology 31, 77–93 (2005)

    Google Scholar 

  56. 56

    Preston, K. A., Cornwell, W. K. & Denoyer, J. L. Wood density and vessel traits as distinct correlates of ecological strategy in 51 California coast range angiosperms. New Phytol. 170, 807–818 (2006)

    Google Scholar 

  57. 57

    Wright, S. J. et al. Functional traits and the growth-mortality trade-off in tropical trees. Ecology 91, 3664–3674 (2010)

    Google Scholar 

  58. 58

    Givnish, T. J. & Vermeij, G. J. Sizes and shapes of liane leaves. Am. Nat. 110, 743–778 (1976)

    Google Scholar 

  59. 59

    Givnish, T. J. Comparative studies of leaf form: assessing the relative roles of selective pressures and phylogenetic constraints. New Phytol. 106, 131–160 (1987)

    Google Scholar 

  60. 60

    Farquhar, G. D., Buckley, T. N. & Miller, J. M. Optimal stomatal control in relation to leaf area and nitrogen content. Silva Fennica 36, 625–637 (2002)

    Google Scholar 

  61. 61

    Ackerly, D. D. & Donoghue, M. J. Leaf size, sapling allometry, and Corner’s rules: phylogeny and correlated evolution in maples (Acer). Am. Nat. 152, 767–791 (1998)

    CAS  Google Scholar 

  62. 62

    Niklas, K. J. Plant Allometry: the Scaling of Form and Process (Univ. of Chicago Press, 1994)

  63. 63

    Cornelissen, J. H. C. A triangular relationship between leaf size and seed size among woody species: allometry, ontogeny, ecology and taxonomy. Oecologia 118, 248–255 (1999)

    ADS  CAS  Google Scholar 

  64. 64

    Poorter, H., Niinemets, U., Poorter, L., Wright, I. J. & Villar, R. Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182, 565–588 (2009)

    Google Scholar 

  65. 65

    Bocanegra-González, K. T., Fermández-Mendez, F. & Galvis-Jiménez, J. F. Grupos funcionales de árboles en bosques secundarios de la región Bajo Calima (Buenaventura, Colombia). Bol. Cient. Mus. Hist. Nat. 19, 17–40 (2015)

    Google Scholar 

  66. 66

    Thompson, K., Band, S. R. & Hodgson, J. G. Seed size and shape predict persistence in soil. Funct. Ecol. 7, 236–241 (1993)

    Google Scholar 

  67. 67

    Moles, A. T. & Westoby, M. Seed size and plant strategy across the whole life cycle. Oikos 113, 91–105 (2006)

    Google Scholar 

  68. 68

    Schleicher, A., Biedermann, R. & Kleyer, M. Dispersal traits determine plant response to habitat connectivity in an urban landscape. Landscape Ecol. 26, 529–540 (2011)

    Google Scholar 

  69. 69

    Leishman, M. R. & Westoby, M. Hypotheses on seed size: tests using the semiarid flora of western New South Wales, Australia. Am. Nat. 143, 890–906 (1994)

    Google Scholar 

  70. 70

    Muller-Landau, H. C. The tolerance-fecundity trade-off and the maintenance of diversity in seed size. Proc. Natl Acad. Sci. USA 107, 4242–4247 (2010)

    ADS  Google Scholar 

  71. 71

    Thomson, F. J., Moles, A. T., Auld, T. D. & Kingsford, R. T. Seed dispersal distance is more strongly correlated with plant height than with seed mass. J. Ecol. 99, 1299–1307 (2011)

    Google Scholar 

  72. 72

    Ben-Hur, E., Fragman-Sapir, O., Hadas, R., Singer, A. & Kadmon, R. Functional trade-offs increase species diversity in experimental plant communities. Ecol. Lett. 15, 1276–1282 (2012)

    Google Scholar 

  73. 73

    Schulze, E.-D. & Schulze, I. Distribution and control of photosynthetic pathways in plants growing in the Namib Desert with special regard to Welwitschia mirabilis. Madoqua 9, 5–13 (1976)

    Google Scholar 

  74. 74

    Schulze, E. D., Eller, B. M., Thomas, D. A., Willert, D. J. V. & Brinckmann, E. Leaf temperatures and energy balance of Welwitschia mirabilis in its natural habitat. Oecologia 44, 258–262 (1980)

    ADS  Google Scholar 

  75. 75

    Zheng, W. Silva Sinica: Volume 1–4 (China Forestry Publishing House, Beijing, 1983)

  76. 76

    Shipley, B. & Parent, M. Germination responses of 64 wetland species in relation to seed size, minimum time to reproduction and seedling relative growth rate. Funct. Ecol. 5, 111–118 (1991)

    Google Scholar 

  77. 77

    Fitter, A. H. & Peat, H. J. The ecological flora database. J. Ecol. 82, 415–425 (1994)

    Google Scholar 

  78. 78

    Shipley, B. Structured interspecific determinants of specific leaf area in 34 species of herbaceous angiosperms. Funct. Ecol. 9, 312–319 (1995)

    Google Scholar 

  79. 79

    Cornelissen, J. H. C. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types. J. Ecol. 84, 573–582 (1996)

    Google Scholar 

  80. 80

    Cornelissen, J. H. C., Diez, P. C. & Hunt, R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 84, 755–765 (1996)

    Google Scholar 

  81. 81

    Atkin, O. K., Westbeek, M., Cambridge, M. L., Lambers, H. & Pons, T. L. Leaf respiration in light and darkness. Plant Physiol. 113, 961–965 (1997)

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Gillison, A. N. & Carpenter, G. A generic plant functional attribute set and grammar for dynamic vegetation description and analysis. Funct. Ecol. 11, 775–783 (1997)

    Google Scholar 

  83. 83

    Castro-Diez, P., Puyravaud, J. P., Cornelissen, J. H. C. & Villar-Salvador, P. Stem anatomy and relative growth rate in seedlings of a wide range of woody plant species and types. Oecologia 116, 57–66 (1998)

    ADS  CAS  Google Scholar 

  84. 84

    Atkin, O. K., Schortemeyer, M., McFarlane, N. & Evans, J. R. The response of fast-and slow-growing Acacia species to elevated atmospheric CO2: an analysis of the underlying components of relative growth rate. Oecologia 120, 544–554 (1999)

    ADS  Google Scholar 

  85. 85

    Bahn, M. et al. in Land Use Changes in European Mountain Ecosystems: ECOMONT Concepts and Results (eds Cernusca, A., Tappeiner, U. & Bayfield, N.) pp. 247–255 (Blackwell Wissenschaft, 1999)

  86. 86

    Hickler, T. Plant functional types and community characteristics along environmental gradients on Oland’s Great Alvar (Sweden). MSci. thesis, Univ. of Lund (1999)

  87. 87

    Medlyn, B. E. et al. Effects of elevated [CO2] on photosynthesis in European forest species: a meta‐analysis of model parameters. Plant Cell Environ. 22, 1475–1495 (1999)

    CAS  Google Scholar 

  88. 88

    Meziane, D. & Shipley, B. Interacting determinants of specific leaf area in 22 herbaceous species: effects of irradiance and nutrient availability. Plant Cell Environ. 22, 447–459 (1999)

    Google Scholar 

  89. 89

    Pyankov, V. I., Kondratchuk, A. V. & Shipley, B. Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytol. 143, 131–142 (1999)

    Google Scholar 

  90. 90

    Carswell, F. E. et al. Photosynthetic capacity in a central Amazonian rain forest. Tree Physiol. 20, 179–186 (2000)

    Google Scholar 

  91. 91

    Fonseca, C. R., Overton, J. M., Collins, B. & Westoby, M. Shifts in trait‐combinations along rainfall and phosphorus gradients. J. Ecol. 88, 964–977 (2000)

    Google Scholar 

  92. 92

    Shipley, B. & Lechowicz, M. J. The functional co-ordination of leaf morphology, nitrogen concentration, and gas exchange in 40 wetland species. Ecoscience 7, 183–194 (2000)

    Google Scholar 

  93. 93

    Wilson, K. B., Baldocchi, D. D. & Hanson, P. J. Spatial and seasonal variability of photosynthetic parameters and their relationship to leaf nitrogen in a deciduous forest. Tree Physiol. 20, 565–578 (2000)

    Google Scholar 

  94. 94

    Koike, F. Plant traits as predictors of woody species dominance in climax forest communities. J. Veg. Sci. 12, 327–336 (2001)

    Google Scholar 

  95. 95

    Niinemets, Ü. Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82, 453–469 (2001)

    Google Scholar 

  96. 96

    Bond-Lamberty, B., Wang, C. & Gower, S. T. Aboveground and belowground biomass and sapwood area allometric equations for six boreal tree species of northern Manitoba. Can. J. For. Res. 32, 1441–1450 (2002)

    Google Scholar 

  97. 97

    Bond-Lamberty, B., Wang, C., Gower, S. T. & Norman, J. Leaf area dynamics of a boreal black spruce fire chronosequence. Tree Physiol. 22, 993–1001 (2002)

    CAS  Google Scholar 

  98. 98

    Meir, P. et al. Acclimation of photosynthetic capacity to irradiance in tree canopies in relation to leaf nitrogen concentration and leaf mass per unit area. Plant Cell Environ. 25, 343–357 (2002)

    Google Scholar 

  99. 99

    Shipley, B. Trade-offs between net assimilation rate and specific leaf area in determining relative growth rate: relationship with daily irradiance. Funct. Ecol. 16, 682–689 (2002)

    Google Scholar 

  100. 100

    Shipley, B. & Vu, T. T. Dry matter content as a measure of dry matter concentration in plants and their parts. New Phytol. 153, 359–364 (2002)

    Google Scholar 

  101. 101

    Vendramini, F. et al. Leaf traits as indicators of resource-use strategy in floras with succulent species. New Phytol. 154, 147–157 (2002)

    Google Scholar 

  102. 102

    Cornelissen, J. H. C. et al. Functional traits of woody plants: correspondence of species rankings between field adults and laboratory‐grown seedlings? J. Veg. Sci. 14, 311–322 (2003)

    Google Scholar 

  103. 103

    Loveys, B. R. et al. Thermal acclimation of leaf and root respiration: an investigation comparing inherently fast‐and slow‐growing plant species. Glob. Change Biol. 9, 895–910 (2003)

    ADS  Google Scholar 

  104. 104

    Mencuccini, M. The ecological significance of long‐distance water transport: short‐term regulation, long‐term acclimation and the hydraulic costs of stature across plant life forms. Plant Cell Environ. 26, 163–182 (2003)

    Google Scholar 

  105. 105

    Ogaya, R. & Peñuelas, J. Comparative field study of Quercus ilex and Phillyrea latifolia: photosynthetic response to experimental drought conditions. Environ. Exp. Bot. 50, 137–148 (2003)

    Google Scholar 

  106. 106

    Pillar, V. D. & Sosinski, E. E. An improved method for searching plant functional types by numerical analysis. J. Veg. Sci. 14, 323–332 (2003)

    Google Scholar 

  107. 107

    Quested, H. M. et al. Decomposition of sub-arctic plants with differing nitrogen economies: a functional role for hemiparasites. Ecology 84, 3209–3221 (2003)

    Google Scholar 

  108. 108

    Sack, L., Cowan, P. D., Jaikumar, N. & Holbrook, N. M. The ‘hydrology’of leaves: co‐ordination of structure and function in temperate woody species. Plant Cell Environ. 26, 1343–1356 (2003)

    Google Scholar 

  109. 109

    Xu, L. & Baldocchi, D. D. Seasonal trends in photosynthetic parameters and stomatal conductance of blue oak (Quercus douglasii) under prolonged summer drought and high temperature. Tree Physiol. 23, 865–877 (2003)

    Google Scholar 

  110. 110

    Adler, P. B., Milchunas, D. G., Lauenroth, W. K., Sala, O. E. & Burke, I. C. Functional traits of graminoids in semi-arid steppes: a test of grazing histories. J. Appl. Ecol. 41, 653–663 (2004)

    Google Scholar 

  111. 111

    Cornelissen, J. H. C. et al. Leaf digestibility and litter decomposability are related in a wide range of subarctic plant species and types. Funct. Ecol. 18, 779–786 (2004)

    Google Scholar 

  112. 112

    Fagúndez, J. & Izco, J. Seed morphology of Calluna salisb. (Ericaceae). Acta Botánica Malacitana 29, 215–220 (2004)

    Google Scholar 

  113. 113

    Givnish, T. J., Montgomery, R. A. & Goldstein, G. Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: light regimes, static light responses, and whole-plant compensation points. Am. J. Bot. 91, 228–246 (2004)

    CAS  Google Scholar 

  114. 114

    Hill, M. O., Preston, C. D. & Roy, D. B. PLANTATT - Attributes of British and Irish Plants: Status, Size, Life History, Geography and Habitatshttp://nora.nerc.ac.uk/9535/1/PLANTATT.pdf (Centre for Ecology & Hydrology, NERC, 2004)

  115. 115

    Kühn, I., Durka, W. & Klotz, S. BiolFlor: a new plant-trait database as a tool for plant invasion ecology. Divers. Distrib. 10, 363–365 (2004)

    Google Scholar 

  116. 116

    Sack, L. Responses of temperate woody seedlings to shade and drought: do trade‐offs limit potential niche differentiation? Oikos 107, 110–127 (2004)

    Google Scholar 

  117. 117

    Von Holle, B. & Simberloff, D. Testing Fox’s assembly rule: does plant invasion depend on recipient community structure? Oikos 105, 551–563 (2004)

    Google Scholar 

  118. 118

    Bakker, C., Rodenburg, J. & Van Bodegom, P. M. Effects of Ca-and Fe-rich seepage on P availability and plant performance in calcareous dune soils. Plant Soil 275, 111–122 (2005)

    CAS  Google Scholar 

  119. 119

    Craine, J. M., Lee, W. G., Bond, W. J., Williams, R. J. & Johnson, L. C. Environmental constraints on a global relationship among leaf and root traits of grasses. Ecology 86, 12–19 (2005)

    Google Scholar 

  120. 120

    Gachet, S., Véla, E. & Tatoni, T. BASECO: a floristic and ecological database of Mediterranean French flora. Biodivers. Conserv. 14, 1023–1034 (2005)

    Google Scholar 

  121. 121

    Han, W., Fang, J., Guo, D. & Zhang, Y. Leaf nitrogen and phosphorus stoichiometry across 753 terrestrial plant species in China. New Phytol. 168, 377–385 (2005)

    CAS  Google Scholar 

  122. 122

    Kirkup, D., Malcolm, P., Christian, G. & Paton, A. Towards a digital African flora. Taxon 54, 457–466 (2005)

    Google Scholar 

  123. 123

    Louault, F., Pillar, V. D., Aufrere, J., Garnier, E. & Soussana, J. F. Plant traits and functional types in response to reduced disturbance in a semi‐natural grassland. J. Veg. Sci. 16, 151–160 (2005)

    Google Scholar 

  124. 124

    Moles, A. T. et al. A brief history of seed size. Science 307, 576–580 (2005)

    ADS  CAS  Google Scholar 

  125. 125

    Nakahashi, C. D., Frole, K. & Sack, L. Bacterial leaf nodule symbiosis in Ardisia (Myrsinaceae): does it contribute to seedling growth capacity? Plant Biol. 7, 495–500 (2005)

    CAS  Google Scholar 

  126. 126

    Peco, B., de Pablos, I., Traba, J. & Levassor, C. The effect of grazing abandonment on species composition and functional traits: the case of dehesa grasslands. Basic Appl. Ecol. 6, 175–183 (2005)

    Google Scholar 

  127. 127

    Rentería, L., Jaramillo, V. J., Martinez-Yrizar, A. & Perez-Jimenez, A. Nitrogen and phosphorus resorption in trees of a Mexican tropical dry forest. Trees 19, 431–441 (2005)

    Google Scholar 

  128. 128

    Sack, L., Tyree, M. T. & Holbrook, N. M. Leaf hydraulic architecture correlates with regeneration irradiance in tropical rainforest trees. New Phytol. 167, 403–413 (2005)

    Google Scholar 

  129. 129

    Schweingruber, F. H. & Landolt, W. The xylem database. http://www.wsl.ch/dendropro/xylemdb/ Swiss Federal Research Institute WSL, updated 2014

  130. 130

    Sheremet’ev, S. N. Herbs on the soil moisture gradient (water relations and the structural-functional organization). KMK, Moscow 271 (2005)

  131. 131

    Vile, D. Significations Fonctionnelle et Ecologique des Traits des Especes Vegetales: Exemple dans une Succession Post-Cultural Mediterraneenne et Generalisations. PhD thesis, Univ. Montpellier 2 (2005)

  132. 132

    Bakker, C., Van Bodegom, P. M., Nelissen, H. J. M., Ernst, W. H. O. & Aerts, R. Plant responses to rising water tables and nutrient management in calcareous dune slacks. Plant Ecol. 185, 19–28 (2006)

    Google Scholar 

  133. 133

    Cavender-Bares, J., Keen, A. & Miles, B. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87 (Suppl), S109–S122 (2006)

    Google Scholar 

  134. 134

    Kazakou, E., Vile, D., Shipley, B., Gallet, C. & Garnier, E. Co‐variations in litter decomposition, leaf traits and plant growth in species from a Mediterranean old‐field succession. Funct. Ecol. 20, 21–30 (2006)

    Google Scholar 

  135. 135

    Kerkhoff, A. J. & Enquist, B. J. Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecol. Lett. 9, 419–427 (2006)

    Google Scholar 

  136. 136

    Poorter, L. & Bongers, F. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743 (2006)

    Google Scholar 

  137. 137

    Sack, L. & Frole, K. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87, 483–491 (2006)

    Google Scholar 

  138. 138

    Sack, L., Melcher, P. J., Liu, W. H., Middleton, E. & Pardee, T. How strong is intracanopy leaf plasticity in temperate deciduous trees? Am. J. Bot. 93, 829–839 (2006)

    Google Scholar 

  139. 139

    Campbell, C. et al. Acclimation of photosynthesis and respiration is asynchronous in response to changes in temperature regardless of plant functional group. New Phytol. 176, 375–389 (2007)

    CAS  Google Scholar 

  140. 140

    Cavender-Bares, J., Sack, L. & Savage, J. Atmospheric and soil drought reduce nocturnal conductance in live oaks. Tree Physiol. 27, 611–620 (2007)

    Google Scholar 

  141. 141

    Cornwell, W. K., Bhaskar, R., Sack, L. & Cordell, S. Adjustment of structure and function of Hawaiian Metrosideros polymorpha at high vs. low precipitation. Funct. Ecol. 21, 1063–1071 (2007)

    Google Scholar 

  142. 142

    Craven, D. et al. Between and within-site comparisons of structural and physiological characteristics and foliar nutrient content of 14 tree species at a wet, fertile site and a dry, infertile site in Panama. For. Ecol. Manage. 238, 335–346 (2007)

    Google Scholar 

  143. 143

    Domingues, T. F., Martinelli, L. A. & Ehleringer, J. R. Ecophysiological traits of plant functional groups in forest and pasture ecosystems from eastern Amazonia, Brazil. Plant Ecol. 193, 101–112 (2007)

    Google Scholar 

  144. 144

    Garnier, E. et al. Assessing the effects of land-use change on plant traits, communities and ecosystem functioning in grasslands: a standardized methodology and lessons from an application to 11 European sites. Ann. Bot. 99, 967–985 (2007)

    Google Scholar 

  145. 145

    Lavergne, S. & Molofsky, J. Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl Acad. Sci. USA 104, 3883–3888 (2007)

    ADS  CAS  Google Scholar 

  146. 146

    Meir, P., Levy, P. E., Grace, J. & Jarvis, P. G. Photosynthetic parameters from two contrasting woody vegetation types in West Africa. Plant Ecol. 192, 277–287 (2007)

    Google Scholar 

  147. 147

    Müller, S. C., Overbeck, G. E., Pfadenhauer, J. & Pillar, V. D. Plant functional types of woody species related to fire disturbance in forest–grassland ecotones. Plant Ecol. 189, 1–14 (2007)

    Google Scholar 

  148. 148

    Pierce, S., Ceriani, R. M., De Andreis, R., Luzzaro, A. & Cerabolini, B. The leaf economics spectrum of Poaceae reflects variation in survival strategies. Plant Biosyst. 141, 337–343 (2007)

    Google Scholar 

  149. 149

    Pierce, S., Luzzaro, A., Caccianiga, M., Ceriani, R. M. & Cerabolini, B. Disturbance is the principal α‐scale filter determining niche differentiation, coexistence and biodiversity in an alpine community. J. Ecol. 95, 698–706 (2007)

    Google Scholar 

  150. 150

    Price, C. A. & Enquist, B. J. Scaling mass and morphology in leaves: an extension of the WBE model. Ecology 88, 1132–1141 (2007)

    Google Scholar 

  151. 151

    Scherer-Lorenzen, M., Schulze, E.-D., Don, A., Schumacher, J. & Weller, E. Exploring the functional significance of forest diversity: a new long-term experiment with temperate tree species (BIOTREE). Perspect. Plant Ecol. Evol. Syst. 9, 53–70 (2007)

    Google Scholar 

  152. 152

    Schurr, F. M. et al. Colonization and persistence ability explain the extent to which plant species fill their potential range. Glob. Ecol. Biogeogr. 16, 449–459 (2007)

    Google Scholar 

  153. 153

    Swaine, E. K. Ecological and Evolutionary Drivers of Plant Community Assembly in a Bornean Rain Forest. PhD thesis, Univ. of Aberdeen (2007)

  154. 154

    Vaieretti, M. V., Díaz, S., Vile, D. & Garnier, E. Two measurement methods of leaf dry matter content produce similar results in a broad range of species. Ann. Bot. 99, 955–958 (2007)

    PubMed  PubMed Central  Google Scholar 

  155. 155

    Coomes, D. A., Heathcote, S., Godfrey, E. R., Shepherd, J. J. & Sack, L. Scaling of xylem vessels and veins within the leaves of oak species. Biol. Lett. 4, 302–306 (2008)

    PubMed  PubMed Central  Google Scholar 

  156. 156

    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008)

    Google Scholar 

  157. 157

    Hoof, J., Sack, L., Webb, D. T. & Nilsen, E. T. Contrasting structure and function of pubescent and glabrous varieties of Hawaiian Metrosideros polymorpha (Myrtaceae) at high elevation. Biotropica 40, 113–118 (2008)

    Google Scholar 

  158. 158

    Kleyer, M. et al. The LEDA Traitbase: a database of life‐history traits of the Northwest European flora. J. Ecol. 96, 1266–1274 (2008)

    Google Scholar 

  159. 159

    Kraft, N. J. B., Valencia, R. & Ackerly, D. D. Functional traits and niche-based tree community assembly in an Amazonian forest. Science 322, 580–582 (2008)

    ADS  CAS  Google Scholar 

  160. 160

    Kurokawa, H. & Nakashizuka, T. Leaf herbivory and decomposability in a Malaysian tropical rain forest. Ecology 89, 2645–2656 (2008)

    Google Scholar 

  161. 161

    Quero, J. L. et al. Relating leaf photosynthetic rate to whole-plant growth: drought and shade effects on seedlings of four Quercus species. Funct. Plant Biol. 35, 725–737 (2008)

    Google Scholar 

  162. 162

    Reich, P. B. et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants. Ecol. Lett. 11, 793–801 (2008)

    Google Scholar 

  163. 163

    Royal Botanical Gardens Kew Seed Information Database (SID). Version 7.1. http://data.kew.org/sid/ (2015)

  164. 164

    Scoffoni, C., Pou, A., Aasamaa, K. & Sack, L. The rapid light response of leaf hydraulic conductance: new evidence from two experimental methods. Plant Cell Environ. 31, 1803–1812 (2008)

    Google Scholar 

  165. 165

    Shiodera, S., Rahajoe, J. S. & Kohyama, T. Variation in longevity and traits of leaves among co-occurring understorey plants in a tropical montane forest. J. Trop. Ecol. 24, 121–133 (2008)

    Google Scholar 

  166. 166

    van Bodegom, P. M., Sorrell, B. K., Oosthoek, A., Bakker, C. & Aerts, R. Separating the effects of partial submergence and soil oxygen demand on plant physiology. Ecology 89, 193–204 (2008)

    Google Scholar 

  167. 167

    Bragazza, L. Conservation priority of Italian Alpine habitats: a floristic approach based on potential distribution of vascular plant species. Biodivers. Conserv. 18, 2823–2835 (2009)

    Google Scholar 

  168. 168

    Ciocarlan, V. The Illustrated Flora of Romania. Pteridophyta et Spermatopyta. (Editura Ceres Bucharest, 2009)

  169. 169

    Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009)

    CAS  Google Scholar 

  170. 170

    Dunbar, S., Sporck, M. & Sack, L. Leaf trait diversification and design in seven rare taxa of the Hawaiian Plantago radiation. Int. J. Plant Sci. 170, 61–75 (2009)

    Google Scholar 

  171. 171

    Fyllas, N. M. et al. Basin-wide variations in foliar properties of Amazonian forest: phylogeny, soils and climate. Biogeosciences 6, 2677–2708 (2009)

    ADS  Google Scholar 

  172. 172

    Green, W. USDA PLANTS Compilation, Version 1. http://bricol.net/downloads/data/PLANTSdatabase/ National Plant Data Center Baton Rouge (2009)

  173. 173

    Kattge, J., Knorr, W., Raddatz, T. & Wirth, C. Quantifying photosynthetic capacity and its relationship to leaf nitrogen content for global‐scale terrestrial biosphere models. Glob. Change Biol. 15, 976–991 (2009)

    ADS  Google Scholar 

  174. 174

    Malhado, A. C. M. et al. Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences 6, 1563–1576 (2009)

    ADS  Google Scholar 

  175. 175

    Manning, P., Houston, K. & Evans, T. Shifts in seed size across experimental nitrogen enrichment and plant density gradients. Basic Appl. Ecol. 10, 300–308 (2009)

    CAS  Google Scholar 

  176. 176

    Moretti, M. & Legg, C. Combining plant and animal traits to assess community functional responses to disturbance. Ecography 32, 299–309 (2009)

    Google Scholar 

  177. 177

    Paula, S. et al. Fire-related traits for plant species of the Mediterranean Basin: Ecological Archives E090-094. Ecology 90, 1420 (2009)

    Google Scholar 

  178. 178

    Poorter, L. Leaf traits show different relationships with shade tolerance in moist versus dry tropical forests. New Phytol. 181, 890–900 (2009)

    Google Scholar 

  179. 179

    Reich, P. B., Oleksyn, J. & Wright, I. J. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species. Oecologia 160, 207–212 (2009)

    ADS  Google Scholar 

  180. 180

    Tecco, P. A., Diaz, S., Cabido, M. & Urcelay, C. Functional traits of alien plants across contrasting climatic and land-use regimes: do aliens join the locals or try harder than them? J. Ecol. 98, 17–27 (2009)

    Google Scholar 

  181. 181

    Wirth, C. & Lichstein, J. W. The Imprint of Species Turnover on Old-Growth Forest Carbon Balances-Insights from a Trait-Based Model of Forest Dynamics in Old-growth Forests - Function, Fate and Value 81–113 (eds. Wirth, C., Gleixner, G. & Heimann, M. ) (Springer-Verlag, 2009)

  182. 182

    Cerabolini, B. E. L. et al. Can CSR classification be generally applied outside Britain? Plant Ecol. 210, 253–261 (2010)

    Google Scholar 

  183. 183

    Domingues, T. F. et al. Co-limitation of photosynthetic capacity by nitrogen and phosphorus in West Africa woodlands. Plant Cell Environ. 33, 959–980 (2010)

    CAS  Google Scholar 

  184. 184

    Hao, G. Y., Sack, L., Wang, A. Y., Cao, K. F. & Goldstein, G. Differentiation of leaf water flux and drought tolerance traits in hemiepiphytic and non‐hemiepiphytic Ficus tree species. Funct. Ecol. 24, 731–740 (2010)

    Google Scholar 

  185. 185

    Messier, J., McGill, B. J. & Lechowicz, M. J. How do traits vary across ecological scales? A case for trait-based ecology. Ecol. Lett. 13, 838–848 (2010)

    Google Scholar 

  186. 186

    Ordoñez, J. C. et al. Plant strategies in relation to resource supply in mesic to wet environments: does theory mirror nature? Am. Nat. 175, 225–239 (2010)

    Google Scholar 

  187. 187

    Peñuelas, J. et al. Faster returns on ‘leaf economics’ and different biogeochemical niche in invasive compared with native plant species. Glob. Change Biol. 16, 2171–2185 (2010)

    ADS  Google Scholar 

  188. 188

    Powers, J. S. & Tiffin, P. Plant functional type classifications in tropical dry forests in Costa Rica: leaf habit versus taxonomic approaches. Funct. Ecol. 24, 927–936 (2010)

    Google Scholar 

  189. 189

    Willis, C. G. et al. Phylogenetic community structure in Minnesota oak savanna is influenced by spatial extent and environmental variation. Ecography 33, 565–577 (2010)

    Google Scholar 

  190. 190

    Blonder, B., Violle, C., Bentley, L. P. & Enquist, B. J. Venation networks and the origin of the leaf economics spectrum. Ecol. Lett. 14, 91–100 (2011)

    Google Scholar 

  191. 191

    Brown, K. A. et al. Assessing natural resource use by forest-reliant communities in Madagascar using functional diversity and functional redundancy metrics. PLoS One 6, e24107 (2011)

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  192. 192

    Butterfield, B. J. & Briggs, J. M. Regeneration niche differentiates functional strategies of desert woody plant species. Oecologia 165, 477–487 (2011)

    ADS  Google Scholar 

  193. 193

    Campetella, G. et al. Patterns of plant trait–environment relationships along a forest succession chronosequence. Agric. Ecosyst. Environ. 145, 38–48 (2011)

    Google Scholar 

  194. 194

    Craine, J. M. et al. Functional consequences of climate change-induced plant species loss in a tallgrass prairie. Oecologia 165, 1109–1117 (2011)

    ADS  Google Scholar 

  195. 195

    de Araujo, A. C. et al. LBA-ECO CD-02 C and N Isotopes in Leaves and Atmospheric CO2, Amazonas, Brazil. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA http://dx.doi.org/10.3334/ORNLDAAC/1097 (2012)

  196. 196

    Laughlin, D. C., Fule, P. Z., Huffman, D. W., Crouse, J. & Laliberte, E. Climatic constraints on trait‐based forest assembly. J. Ecol. 99, 1489–1499 (2011)

    Google Scholar 

  197. 197

    Milla, R. & Reich, P. B. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Ann. Bot. 107, 455–465 (2011)

    PubMed  PubMed Central  Google Scholar 

  198. 198

    Onoda, Y. et al. Global patterns of leaf mechanical properties. Ecol. Lett. 14, 301–312 (2011)

    Google Scholar 

  199. 199

    Prentice, I. C. et al. Evidence of a universal scaling relationship for leaf CO2 drawdown along an aridity gradient. New Phytol. 190, 169–180 (2011)

    CAS  Google Scholar 

  200. 200

    Sandel, B., Corbin, J. D. & Krupa, M. Using plant functional traits to guide restoration: a case study in California coastal grassland. Ecosphere 2, art23 (2011)

    Google Scholar 

  201. 201

    Tucker, S. S., Craine, J. M. & Nippert, J. B. Physiological drought tolerance and the structuring of tallgrass prairie assemblages. Ecosphere 2, art48 (2011)

    Google Scholar 

  202. 202

    Yguel, B. et al. Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecol. Lett. 14, 1117–1124 (2011)

    Google Scholar 

  203. 203

    Adriaenssens, S. Dry Deposition and Canopy Exchange for Temperate Tree Species under High Nitrogen Deposition. PhD thesis, Ghent Univ. (2012)

  204. 204

    Beckmann, M., Hock, M., Bruelheide, H. & Erfmeier, A. The role of UV-B radiation in the invasion of Hieracium pilosella—A comparison of German and New Zealand plants. Environ. Exp. Bot. 75, 173–180 (2012)

    Google Scholar 

  205. 205

    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012)

    ADS  CAS  Google Scholar 

  206. 206

    Craine, J., Towne, E. G., Ocheltree, T. & Nippert, J. Community traitscape of foliar nitrogen isotopes reveals N availability patterns in a tallgrass prairie. Plant Soil 356, 395–403 (2012)

    CAS  Google Scholar 

  207. 207

    Frenette-Dussault, C., Shipley, B., Léger, J. F., Meziane, D. & Hingrat, Y. Functional structure of an arid steppe plant community reveals similarities with Grime’s C‐S‐R theory. J. Veg. Sci. 23, 208–222 (2012)

    Google Scholar 

  208. 208

    Gallagher, R. V. & Leishman, M. R. A global analysis of trait variation and evolution in climbing plants. J. Biogeogr. 39, 1757–1771 (2012)

    Google Scholar 

  209. 209

    Guerin, G. R., Wen, H. & Lowe, A. J. Leaf morphology shift linked to climate change. Biol. Lett. 8, 882–886 (2012)

    PubMed  PubMed Central  Google Scholar 

  210. 210

    Gutiérrez, A. G. & Huth, A. Successional stages of primary temperate rainforests of Chiloé Island, Chile. Perspect. Plant Ecol. Evol. Syst. 14, 243–256 (2012)

    Google Scholar 

  211. 211

    Guy, A. L., Mischkolz, J. M. & Lamb, E. G. Limited effects of simulated acidic deposition on seedling survivorship and root morphology of endemic plant taxa of the Athabasca Sand Dunes in well-watered greenhouse trials. Botany 91, 176–181 (2012)

    Google Scholar 

  212. 212

    Han, W. et al. Floral, climatic and soil pH controls on leaf ash content in China’s terrestrial plants. Glob. Ecol. Biogeogr. 21, 376–382 (2012)

    Google Scholar 

  213. 213

    Minden, V., Andratschke, S., Spalke, J., Timmermann, H. & Kleyer, M. Plant trait–environment relationships in salt marshes: Deviations from predictions by ecological concepts. Perspect. Plant Ecol. Evol. Syst. 14, 183–192 (2012)

    Google Scholar 

  214. 214

    Minden, V. & Kleyer, M. Testing the effect–response framework: key response and effect traits determining above‐ground biomass of salt marshes. J. Veg. Sci. 22, 387–401 (2011)

    Google Scholar 

  215. 215

    Pierce, S., Brusa, G., Sartori, M. & Cerabolini, B. E. L. Combined use of leaf size and economics traits allows direct comparison of hydrophyte and terrestrial herbaceous adaptive strategies. Ann. Bot. 109, 1047–1053 (2012)

    PubMed  PubMed Central  Google Scholar 

  216. 216

    Spasojevic, M. J. & Suding, K. N. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J. Ecol. 100, 652–661 (2012)

    Google Scholar 

  217. 217

    Vergutz, L., Manzoni, S., Porporato, A., Novais, R. F. & Jackson, R. B. A Global Database of Carbon and Nutrient Concentrations of Green and Senesced Leaves. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA http://dx.doi.org/10.3334/ORNLDAAC/1106 (2012)

  218. 218

    Williams, M., Shimabokuro, Y. E. & Rastetter, E. B. LBA-ECO CD-09 Soil and Vegetation Characteristics, Tapajos National Forest, Brazil. Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA http://dx.doi.org/10.3334/ORNLDAAC/1104 (2012)

  219. 219

    Wright, J. P. & Sutton-Grier, A. Does the leaf economic spectrum hold within local species pools across varying environmental conditions? Funct. Ecol. 26, 1390–1398 (2012)

    Google Scholar 

  220. 220

    Auger, S. & Shipley, B. Interspecific and intraspecific trait variation along short environmental gradients in an old-growth temperate forest. J. Veg. Sci. 24, 419–428 (2013)

    Google Scholar 

  221. 221

    Blonder, B., Violle, C. & Enquist, B. J. Assessing the causes and scales of the leaf economics spectrum using venation networks in Populus tremuloides. J. Ecol. 101, 981–989 (2013)

    Google Scholar 

  222. 222

    Byun, C., Blois, S. & Brisson, J. Plant functional group identity and diversity determine biotic resistance to invasion by an exotic grass. J. Ecol. 101, 128–139 (2013)

    Google Scholar 

  223. 223

    Chen, Y., Han, W., Tang, L., Tang, Z. & Fang, J. Leaf nitrogen and phosphorus concentrations of woody plants differ in responses to climate, soil and plant growth form. Ecography 36, 178–184 (2013)

    Google Scholar 

  224. 224

    Conti, G. & Díaz, S. Plant functional diversity and carbon storage–an empirical test in semi‐arid forest ecosystems. J. Ecol. 101, 18–28 (2013)

    CAS  Google Scholar 

  225. 225

    Conti, G., Enrico, L., Casanoves, F. & Diaz, S. Shrub biomass estimation in the semiarid Chaco forest: a contribution to the quantification of an underrated carbon stock. Ann. For. Sci. 70, 515–524 (2013)

    Google Scholar 

  226. 226

    Demey, A. et al. Nutrient input from hemiparasitic litter favors plant species with a fast-growth strategy. Plant Soil 371, 53–66 (2013)

    CAS  Google Scholar 

  227. 227

    Kichenin, E., Wardle, D. A., Peltzer, D. A., Morse, C. W. & Freschet, G. T. Contrasting effects of plant inter‐and intraspecific variation on community‐level trait measures along an environmental gradient. Funct. Ecol. 27, 1254–1261 (2013)

    Google Scholar 

  228. 228

    Pahl, A. T., Kollmann, J., Mayer, A. & Haider, S. No evidence for local adaptation in an invasive alien plant: field and greenhouse experiments tracing a colonization sequence. Ann. Bot. 112, 1921–1930 (2013)

    PubMed  PubMed Central  Google Scholar 

  229. 229

    Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014)

    ADS  CAS  Google Scholar 

  230. 230

    Everwand, G., Fry, E. L., Eggers, T. & Manning, P. Seasonal variation in the vapacity for plant trait measures to predict grassland carbon and water fluxes. Ecosystems (N. Y.) 17, 1095–1108 (2014)

    CAS  Google Scholar 

  231. 231

    Fry, E. L., Power, S. A. & Manning, P. Trait‐based classification and manipulation of plant functional groups for biodiversity–ecosystem function experiments. J. Veg. Sci. 25, 248–261 (2014)

    Google Scholar 

  232. 232

    Iida, Y. et al. Linking functional traits and demographic rates in a subtropical tree community: the importance of size dependency. J. Ecol. 102, 641–650 (2014)

    Google Scholar 

  233. 233

    Blonder, B. et al. Testing models for the leaf economics spectrum with leaf and whole-plant traits in Arabidopsis thaliana. AoB Plants 7, plv049 (2015)

    PubMed  PubMed Central  Google Scholar 

  234. 234

    Meng, T.-T. et al. Responses of leaf traits to climatic gradients: adaptive variation versus compositional shifts. Biogeosciences Discuss. 12, 7093–7124 (2015)

    Google Scholar 

  235. 235

    Burrascano, S. et al. Environmental filtering of wild boar rooting activity on understorey composition and functional traits. Community Ecol. 16, 244–253 (2015)

    Google Scholar 

  236. 236

    Albert, C. H. et al. Intraspecific functional variability: extent, structure and sources of variation. J. Ecol. 98, 604–613 (2010)

    Google Scholar 

  237. 237

    Gillison, A. N. in Vegetation Ecology 2nd edn (eds. van der Maarel, E. & Franklin, J. ) pp. 347–386 (Wiley Online Library, 2013)

  238. 238

    Niinemets, Ü., Keenan, T. F. & Hallik, L. A worldwide analysis of within-canopy variations in leaf structural, chemical and physiological traits across plant functional types. New Phytol. 205, 973–993 (2015)

    CAS  Google Scholar 

  239. 239

    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013)

    Google Scholar 

  240. 240

    Page, C. N. The ferns of Britain and Ireland (Cambridge Univ. Press, 1997)

  241. 241

    Lloyd, R. M. Spore morphology of the Hawaiian genus Sadleria (Blechnaceae). Am. Fern J. 66, 1–7 (1976)

    Google Scholar 

  242. 242

    Conway, E. Spore production in bracken (Pteridium aquilinum (L.) Kuhn). J. Ecol. 45, 273–284 (1957)

    Google Scholar 

  243. 243

    Stoor, A. M., Boudrie, M., Jérǒme, C., Horn, K. & Bennert, H. W. Diphasiastrum oellgaardii (Lycopodiaceae, Pteridophyta), a new lycopod species from Central Europe and France. Feddes Repert. 107, 149–157 (1996)

    Google Scholar 

  244. 244

    Büntgen, U., Psomas, A. & Schweingruber, F. H. Introducing wood anatomical and dendrochronological aspects of herbaceous plants: applications of the Xylem Database to vegetation science. J. Veg. Sci. 25, 967–977 (2014)

    Google Scholar 

  245. 245

    Blonder, B., Lamanna, C., Violle, C. & Enquist, B. J. The n‐dimensional hypervolume. Glob. Ecol. Biogeogr. 23, 595–609 (2014)

    Google Scholar 

  246. 246

    Manly, B. J. Randomization, Bootstrap and Monte Carlo Methods in Biology (Chapman & Hall, 1997)

  247. 247

    Di Rienzo, J. A. et al. InfoStat version 2015. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. (Cordoba, 2015)

  248. 248

    Jongman, R. H. G., ter Braak, C. J. F. & van Tongeren, O. F. R. Data Analysis in Community and Landscape Ecology. (Pudor, Wageningen, 1987)

  249. 249

    Dray, S. On the number of principal components: a test of dimensionality based on measurements of similarity between matrices. Comput. Stat. Data Anal. 52, 2228–2237 (2008)

    MathSciNet  MATH  Google Scholar 

  250. 250

    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D. Nlme: Linear and Nonlinear Mixed Effects Models. “nlme” R package version 3.1-108. http://CRAN.R-project.org/package=nlme (2013)

  251. 251

    Bates, D., Maechler, M. & Bolker, B. Lme4: linear mixed-effects models using S4 classes. R package version 0.999999-2. http://lme4.r-forge.r-project.org/ (2013)

  252. 252

    R Development Core Team. R: A language and environment for statistical computing. https://www.r-project.org/ (R Foundation for Statistical Computing, 2014)

  253. 253

    Shan, H. et al. Gap filling in the Plant Kingdom: trait prediction using Hierarchical Probabilistic Matrix Factorization. Proceedings of the 29th International Conference on Machine Learning (ICML)http://arxiv.org/abs/1206.6439 (2012)

  254. 254

    Fazayeli, F., Banerjee, A., Kattge, J., Schrodt, F. & Reich, P. B. Uncertainty quantified matrix completion using Bayesian Hierarchical Matrix Factorization in 13th International Conference on Machine Learning and Applications (ICMLA), http://dx.doi.org/10.1109/ICMLA.2014.56 (2014)

  255. 255

    Schrodt, F. et al. BHPMF – a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. (2015)

  256. 256

    Peres-Neto, P. R. & Jackson, D. A. How well do multivariate data sets match? The advantages of a Procrustean superimposition approach over the Mantel test. Oecologia 129, 169–178 (2001)

    ADS  Google Scholar 

  257. 257

    Oksanen, J. et al. vegan: Community Ecology Package, version 2.0–7. http://CRAN.R-project.org/package=vegan (2008)

  258. 258

    Wand, M. & Jones, M. Kernel Smoothing (Chapman and Hall, 1995)

  259. 259

    Duong, T. ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 21, 1–16 (2007)

    Google Scholar 

  260. 260

    Duong, T. & Hazelton, M. Plug-in bandwidth matrices for bivariate kernel density Estimation. J. Nonparametr. Stat. 15, 17–30 (2003)

    MathSciNet  MATH  Google Scholar 

  261. 261

    New, M., Hulme, M. & Jones, P. Representing twentieth-century space-time climate variability. Part I: Development of a 1961-90 mean monthly terrestrial climatology. J. Clim. 12, 829–856 (1999)

    ADS  Google Scholar 

  262. 262

    Whittaker, R. J. Communities and Ecosystems (Macmillan, 1975)

  263. 263

    Warton, D. I., Wright, I. J., Falster, D. S. & Westoby, M. Bivariate line-fitting methods for allometry. Biol. Rev. Camb. Philos. Soc. 81, 259–291 (2006)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the many researchers who contributed to this study by making their data available, helping to check information, and/or providing comments at various stages. The study was supported by the TRY initiative on plant traits (http://www.try-db.org). The TRY database is hosted at the Max Planck Institute for Biogeochemistry (Jena, Germany) and supported by DIVERSITAS/Future Earth, the German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, and BACI (grant ID 640176). The study has also been partially supported by the following institutions and grants to S.Di.: Universidad Nacional de Córdoba and CONICET, FONCyT (PICT 554) and SECyT (Argentina), The Leverhulme Trust, UK, and Inter-American Institute for Global Change Research (IAI) SGP-CRA2015 (supported by US National Science Foundation grant GEO-1138881).

Author information

Affiliations

Authors

Contributions

Order in list of authors reflects overall participation in this article. S.Di., J.K. and S.L. designed the study. S.Di., J.K., J.H.C.C., I.J.W., S.L., M.K., C.W., E.G., I.C.P , M.W., H.P., P.B.R., A.T.M., J.D, A.N.G., A.E.Z., J.C., S.J.W., S.N.S., H.J., C.B., B.C., S.P., B. S. and D.K. contributed substantial amounts of data. S.Di., J.K., G.B., A.G. and V.F. constructed the database. S.Di., J.K., J.H.C.C., I.J.W., S.L., S.Dr., B.R., M.K., C.W., E.G., F.C., J.S.J., N.R., M.D.M. and L.D.G. carried out analyses. S.Di., J.K., J.H.C.C., I.J.W., S.L., M.K., C.W., I.C.P., M.W. and P.B.R. wrote the article with contributions from S.Dr., B.R., E.G., H.P., A.T.M., J.D., A.N.G., A.E.Z., J.C., S.J.W., S.N.S., H.J., C.B., B.C., S.P., B.S., DK, F.C., M.D.M. and L.D.G.

Corresponding author

Correspondence to Sandra Díaz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Climatic and geographical coverage of the dataset.

ad, Green points, occurrence according to GBIF (http://www.gbif.org) of species with information on all six traits (a, c) and at least one trait (b, d). Upper panels (a, b) show distribution in major climatic regions of the world; grey, MAP and MAT as in CRU0.5 degree climatology261; Biome classification according to ref. 262. Lower panels (c, d) show distribution in the global map (Robinson projection); grey, land surface. Maps based on the R package ‘maps’, accessed at The Comprehensive R Archive Network (https://cran.r-project.org/web/packages/maps/index.html).

Extended Data Figure 2 Tests of the distribution of growth-forms (a) and major taxa (b) in trait space.

Woody and non-woody species differed significantly in their positions along PC1 but not along PC2. Angiosperms differed significantly from gymnosperms and pteridophytes in their positions along both axes; gymnosperms and pteridophytes differed in their position along PC1 but not along PC2 (see Methods for details of PCA analysis and a posteriori tests). Whiskers denote ± 3 s.d. from mean; n woody = 1,001; n non-woody = 1,209; n angiosperms = 2,120; n gymnosperms = 80; n pteridophytes = 14). Horizontal bars and dots within boxes indicate mean and median, respectively. Means with the same letter are not significantly different (Fisher’s least significant difference; P > 0.01).

Extended Data Figure 3 Selected bivariate relationships underlying the global spectrum of plant form and function, showing herbaceous (green) and woody (black) species separately.

See Extended Data Fig. 4 for standardized major axes statistics (slope, r2, sample size) of these and all other pairwise trait combinations.

Extended Data Figure 4 Bivariate relationships between the six traits that underlie the global spectrum of plant form and function.

The lower left portion of the matrix shows two-dimensional probability density distributions of bivariate trait relationships derived through kernel density estimation (see Methods). The colour gradient indicates regions of highest (red) to lowest (white) occurrence probability of trait combinations with contour lines indicating 0.5, 0.95 and 0.99 quantiles. The upper right portion contains standardized major axis (SMA)263 statistics (slope, r2, sample size n, and statistical significance, NS, P > 0.05; *0.05 > P > 0.01; **0.01 > P > 0.001; ***P < 0.001) for the corresponding relationships for all species (a), and for herbaceous (h) and woody species (w) separately. The diagonal displays the total sample sizes for each trait. For traits showing a strongly bimodal distribution, the all-species slope and correlation should be treated with caution. Pteridophytes show a discontinuous distribution in SM, but otherwise fall well within the general distribution of points; they represent less than 1% of the dataset, therefore including or excluding them does not significantly alter any of the relationships. SMAs were fitted using SMATR v.2 (http://www.bio.mq.edu.au/ecology/SMATR/).

Extended Data Table 1 Principal component analyses (PCAs) of global plant trait data
Extended Data Table 2 Description and illustrative examples of species at different positions at the margin of the global spectrum of plant form and function

Supplementary information

Supplementary Information

This file contains links to Supplementary Applications 1 and 2 and Supplementary Tables 1-2. (PDF 136 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Díaz, S., Kattge, J., Cornelissen, J. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016). https://doi.org/10.1038/nature16489

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing