Abstract

Although water vapour is the main species observed in the coma of comet 67P/Churyumov–Gerasimenko1,2 and water is the major constituent of cometary nuclei3,4, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far5,6. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far7,8,9. The nucleus of 67P/Churyumov–Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material10. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations6,7,8,9. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers6, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust10 is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov–Gerasimenko11,12 is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet’s formation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Time variability and heterogeneity in the coma of 67P/Churyumov–Gerasimenko. Science 347, (2015)

  2. 2.

    et al. Subsurface properties and early activity of comet 67P/Churyumov–Gerasimenko. Science 347, (2015)

  3. 3.

    & The chemical composition of comets—emerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471–524 (2011)

  4. 4.

    , & in Comets II (eds , & ) 115–133 (Univ. of Arizona Press, 2004)

  5. 5.

    et al. OSIRIS observations of meter-size exposures of H2O ice at the surface of 67P/Churyumov–Gerasimenko and interpretation using laboratory experiments. Astron. Astrophys. 583, A25 (2015)

  6. 6.

    et al. The diurnal cycle of water ice on comet 67P/Churyumov–Gerasimenko. Nature 525, 500–503 (2015)

  7. 7.

    et al. The organic-rich surface of comet 67P/Churyumov–Gerasimenko as seen by VIRTIS/Rosetta. Science 347, (2015)

  8. 8.

    et al. Exposed water ice deposits on the surface of comet 9P/Tempel 1. Science 311, 1453–1455 (2006)

  9. 9.

    et al. EPOXI at comet Hartley 2. Science 332, 1396–1400 (2011)

  10. 10.

    et al. The distribution of water ice on comet 103P/Hartley 2. Lunar Planet. Inst. Contrib. 1667, 6438 (2012)

  11. 11.

    et al. The morphological diversity of comet 67P/Churyumov–Gerasimenko. Science 347, (2015)

  12. 12.

    et al. Two independent and primitive envelopes of the bilobate nucleus of comet 67P. Nature 526, 402–405 (2015)

  13. 13.

    et al. On the nucleus structure and activity of comet 67P/Churyumov–Gerasimenko. Science 347, (2015)

  14. 14.

    et al. Geomorphology of the Imhotep region on comet 67P/Churyumov–Gerasimenko from OSIRIS observations. Astron. Astrophys. 583, A35 (2015)

  15. 15.

    et al. Virtis: an imaging spectrometer for the Rosetta mission. Space Sci. Rev. 128, 529–559 (2007)

  16. 16.

    & The temperature-dependent near-infrared absorption spectrum of hexagonal H2O ice. J. Geophys. Res. 103, 25809–25822 (1998)

  17. 17.

    et al. Optical constants of amorphous and crystalline H2O ice in the near infrared from 1.1 to 2.6 μm. Icarus 197, 307–320 (2008)

  18. 18.

    et al. The distribution of water ice in the interior of comet Tempel 1. Icarus 190, 284–294 (2007)

  19. 19.

    , & in Comets II (eds , & ) 115–133 (Univ. Arizona Press, 2004)

  20. 20.

    , & Comet 46P/Wirtanen: evolution of the subsurface layer. Icarus 142, 202–218 (1999)

  21. 21.

    , , & Energy analysis of porous water ice under space-simulated conditions: results from the KOSI-8 experiment. Planet. Space Sci. 43, 353–361 (1995)

  22. 22.

    Calibrazioni a terra e prestazioni in volo di spettrometri ad immagine nel visibile e nel vicino infrarosso per l’esplorazione planetaria. PhD dissertation, Univ. Studi di Napoli Federico II (2006); available at

  23. 23.

    et al. On-ground characterization of Rosetta/VIRTIS-M. I. Spectral and geometrical calibrations. Rev. Sci. Instrum. 77, 093109 (2006)

  24. 24.

    et al. On-ground characterization of Rosetta/VIRTIS-M. II. Spatial and radiometric calibrations. Rev. Sci. Instrum. 77, 103106 (2006)

  25. 25.

    et al. Comparative analysis of airglow emissions in terrestrial planets, observed with VIRTIS-M instruments on board Rosetta and Venus Express. Icarus 226, 1115–1127 (2013)

  26. 26.

    Spectrophotometric analysis of cometary nuclei from in situ observations. PhD thesis, Univ. degli studi di Roma Tor Vergata (2014); preprint at

  27. 27.

    et al. Thermal measurements of dark and bright surface features on Vesta as derived from Dawn/VIR. Icarus 240, 36–57 (2014)

  28. 28.

    et al. Thermal maps and properties of comet 67P as derived from Rosetta/VIRTIS data. Lunar Planet. Sci. Conf. XXXXVI, 2156 (LPI contribution no. 1832, 2015)

  29. 29.

    & Sublimation of ices of astrophysical interest: a bibliographic review. Planet. Space Sci. 57, 2053–2080 (2009)

  30. 30.

    Theory of Reflectance and Emittance Spectroscopy (Cambridge Univ. Press, 2012)

  31. 31.

    et al. Hapke modeling of Rhea surface properties through Cassini-VIMS spectra. Icarus 214, 541–555 (2011)

  32. 32.

    et al. Photometric properties of comet 67P/Churyumov–Gerasimenko from VIRTIS-M onboard Rosetta. Astron. Astrophys. 583, A31 (2015)

  33. 33.

    Optical constants of ice from the ultraviolet to the microwave. Appl. Opt. 23, 1206 (1984)

  34. 34.

    et al. Optical constants of amorphous and crystalline H2O-ice: 2.5-22 μm (4000-455 cm–1) optical constants of H2O-ice. Astrophys. J. 701, 1347–1356 (2009)

  35. 35.

    et al. The surface composition of Iapetus: mapping results from Cassini VIMS. Icarus 218, 831–860 (2012)

Download references

Acknowledgements

We thank the following institutions and agencies, which supported this work: Italian Space Agency (ASI, Italy), Centre National d’Etudes Spatiales (CNES, France), Deutsches Zentrum für Luft- und Raumfahrt (DLR, Germany), National Aeronautic and Space Administration (NASA, USA). VIRTIS was built by a consortium from Italy, France and Germany, under the scientific responsibility of the Istituto di Astrofisica e Planetologia Spaziali (IAPS) of INAF, Rome (Italy), which also led the scientific operations. The VIRTIS instrument development for the ESA has been funded and managed by ASI, with contributions from Observatoire de Meudon financed by CNES and from the DLR. The VIRTIS instrument industrial prime contractor was former Officine Galileo, now Selex ES (Finmeccanica Group) in Campi Bisenzio, Florence, Italy. We also thank the Rosetta Liaison Scientists, the Rosetta Science Ground Segment and the Rosetta Mission Operations Centre for their support in planning the VIRTIS observations. This research has made use of NASA’s Astrophysics Data System. This work is dedicated to Angioletta Coradini, conceiver of the VIRTIS instrument.

Author information

Affiliations

  1. INAF-IAPS, Istituto di Astrofisica e Planetologia Spaziali, Rome, Italy

    • G. Filacchione
    • , M. C. De Sanctis
    • , F. Capaccioni
    • , A. Raponi
    • , F. Tosi
    • , M. Ciarniello
    • , P. Cerroni
    • , G. Piccioni
    • , M. T. Capria
    • , E. Palomba
    • , G. Bellucci
    • , A. Longobardo
    • , A. Migliorini
    • , G. Magni
    • , M. Formisano
    • , A. Frigeri
    • , D. Grassi
    • , G. Rinaldi
    • , M. Cartacci
    • , A. Cicchetti
    • , S. Giuppi
    • , R. Noschese
    •  & R. Politi
  2. LESIA, Observatoire de Paris/CNRS/UPMC/Université Paris-Diderot, Meudon, France

    • S. Erard
    • , D. Bockelee-Morvan
    • , C. Leyrat
    • , M. A. Barucci
    • , M. Fulchignoni
    • , M. Combes
    • , J. Crovisier
    • , P. Drossart
    • , T. Encrenaz
    • , D. Tiphene
    • , N. Biver
    • , D. Despan
    • , S. Fornasier
    • , F. Merlin
    • , Y. Hello
    • , F. Henry
    • , S. Jacquinod
    •  & J. M. Reess
  3. Institute for Planetary Research, DLR, Berlin, Germany

    • G. Arnold
    • , R. Jaumann
    • , K. Stephan
    • , U. Carsenty
    • , E. Kuehrt
    • , L. Moroz
    • , S. Mottola
    • , D. Kappel
    •  & K. Markus
  4. Université Grenoble Alpes, CNRS, IPAG, Grenoble, France

    • B. Schmitt
    • , E. Quirico
    • , P. Beck
    •  & L. Bonal
  5. INAF-Osservatorio di Capodimonte, Napoli, Italy

    • V. Mennella
  6. UCLA, Los Angeles, California, USA

    • E. Ammannito
  7. European Space Agency—ESTEC, Noordwijk, The Netherlands

    • J. Benkhoff
    •  & L. Colangeli
  8. Institut d’Astrophysique Spatial CNRS, Orsay, France

    • J. P. Bibring
    •  & Y. Langevin
  9. Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Lecce, Italy

    • A. Blanco
    • , S. Fonti
    • , V. Orofino
    •  & F. Mancarella
  10. Space Research Centre, Polish Academy of Sciences, Warsaw, Poland

    • M. I. Blecka
  11. NASA JPL, Pasadena, California, USA

    • R. Carlson
    •  & M. S. Gudipati
  12. Space Physics Research Laboratory, The University of Michigan, Michigan, Ann Arbor, USA

    • M. Combi
  13. Università di Perugia, Perugia, Italy

    • C. Federico
  14. Lunar Planetary Laboratory, University of Arizona, Tucson, Arizona, USA

    • U. Fink
  15. National Central University, Taipei, Taiwan

    • W. H. Ip
  16. Department of Physics, Oxford University, Oxford, UK

    • P. Irwin
    •  & F. Taylor
  17. Bear Fight Institute, Winthrop, Washington, USA

    • T. McCord
    •  & J-Ph. Combe
  18. Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany

    • U. Schade
  19. INAF-Osservatorio Astrofisico di Arcetri, Firenze, Italy

    • G. P. Tozzi
  20. Agenzia Spaziale Italiana, Rome, Italy

    • E. Flamini
  21. Istituto di Radioastronomia—INAF, Bologna, Italy

    • R. Orosei
  22. Institute of Optical Sensor Systems, DLR, Berlin, Germany

    • G. Peter

Authors

  1. Search for G. Filacchione in:

  2. Search for M. C. De Sanctis in:

  3. Search for F. Capaccioni in:

  4. Search for A. Raponi in:

  5. Search for F. Tosi in:

  6. Search for M. Ciarniello in:

  7. Search for P. Cerroni in:

  8. Search for G. Piccioni in:

  9. Search for M. T. Capria in:

  10. Search for E. Palomba in:

  11. Search for G. Bellucci in:

  12. Search for S. Erard in:

  13. Search for D. Bockelee-Morvan in:

  14. Search for C. Leyrat in:

  15. Search for G. Arnold in:

  16. Search for M. A. Barucci in:

  17. Search for M. Fulchignoni in:

  18. Search for B. Schmitt in:

  19. Search for E. Quirico in:

  20. Search for R. Jaumann in:

  21. Search for K. Stephan in:

  22. Search for A. Longobardo in:

  23. Search for V. Mennella in:

  24. Search for A. Migliorini in:

  25. Search for E. Ammannito in:

  26. Search for J. Benkhoff in:

  27. Search for J. P. Bibring in:

  28. Search for A. Blanco in:

  29. Search for M. I. Blecka in:

  30. Search for R. Carlson in:

  31. Search for U. Carsenty in:

  32. Search for L. Colangeli in:

  33. Search for M. Combes in:

  34. Search for M. Combi in:

  35. Search for J. Crovisier in:

  36. Search for P. Drossart in:

  37. Search for T. Encrenaz in:

  38. Search for C. Federico in:

  39. Search for U. Fink in:

  40. Search for S. Fonti in:

  41. Search for W. H. Ip in:

  42. Search for P. Irwin in:

  43. Search for E. Kuehrt in:

  44. Search for Y. Langevin in:

  45. Search for G. Magni in:

  46. Search for T. McCord in:

  47. Search for L. Moroz in:

  48. Search for S. Mottola in:

  49. Search for V. Orofino in:

  50. Search for U. Schade in:

  51. Search for F. Taylor in:

  52. Search for D. Tiphene in:

  53. Search for G. P. Tozzi in:

  54. Search for P. Beck in:

  55. Search for N. Biver in:

  56. Search for L. Bonal in:

  57. Search for J-Ph. Combe in:

  58. Search for D. Despan in:

  59. Search for E. Flamini in:

  60. Search for M. Formisano in:

  61. Search for S. Fornasier in:

  62. Search for A. Frigeri in:

  63. Search for D. Grassi in:

  64. Search for M. S. Gudipati in:

  65. Search for D. Kappel in:

  66. Search for F. Mancarella in:

  67. Search for K. Markus in:

  68. Search for F. Merlin in:

  69. Search for R. Orosei in:

  70. Search for G. Rinaldi in:

  71. Search for M. Cartacci in:

  72. Search for A. Cicchetti in:

  73. Search for S. Giuppi in:

  74. Search for Y. Hello in:

  75. Search for F. Henry in:

  76. Search for S. Jacquinod in:

  77. Search for J. M. Reess in:

  78. Search for R. Noschese in:

  79. Search for R. Politi in:

  80. Search for G. Peter in:

Contributions

G.F., M.C.D.S. and F.C. contributed to the data analysis and to the writing of the manuscript. G.F. and F.C. provided calibrated VIRTIS data. A.R. and M.C. provided the spectral fit. F.T. retrieved the temperatures. S.E., S.J., F.T. and C.L. provided geometry information. F.C., G.F., S.E., D.B.-M. and C.L. planned VIRTIS observations with R.N., M.C., A.C. and F.H. implementing telecommands sequences. R.P. and F.H. processed telemetry and data packets. All authors are instrument team members contributing to the discussion of the results.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to G. Filacchione.

The VIRTIS calibrated data will be available through the ESA’s Planetary Science Archive (PSA) website by early 2016 (http://www.rssd.esa.int).

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature16190

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Newsletter Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing