Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature

Abstract

In ferromagnetic conductors, an electric current may induce a transverse voltage drop in zero applied magnetic field: this anomalous Hall effect1 is observed to be proportional to magnetization, and thus is not usually seen in antiferromagnets in zero field2. Recent developments in theory and experiment have provided a framework for understanding the anomalous Hall effect using Berry-phase concepts3, and this perspective has led to predictions that, under certain conditions, a large anomalous Hall effect may appear in spin liquids and antiferromagnets without net spin magnetization4,5,6,7,8. Although such a spontaneous Hall effect has now been observed in a spin liquid state9, a zero-field anomalous Hall effect has hitherto not been reported for antiferromagnets. Here we report empirical evidence for a large anomalous Hall effect in an antiferromagnet that has vanishingly small magnetization. In particular, we find that Mn3Sn, an antiferromagnet that has a non-collinear 120-degree spin order10,11, exhibits a large anomalous Hall conductivity of around 20 per ohm per centimetre at room temperature and more than 100 per ohm per centimetre at low temperatures, reaching the same order of magnitude as in ferromagnetic metals3. Notably, the chiral antiferromagnetic state has a very weak and soft ferromagnetic moment of about 0.002 Bohr magnetons per Mn atom (refs 10, 12), allowing us to switch the sign of the Hall effect with a small magnetic field of around a few hundred oersted. This soft response of the large anomalous Hall effect could be useful for various applications including spintronics—for example, to develop a memory device that produces almost no perturbing stray fields.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal and magnetic structures of Mn3Sn.
Figure 2: Magnetic field dependence of the AHE in Mn3Sn.
Figure 3: In-plane weak ferromagnetism in Mn3Sn.
Figure 4: Temperature evolution of the zero-field component of the AHE.

Similar content being viewed by others

References

  1. Hall, E. H. On the “rotational coefficient” in nickel and cobalt. Proc. Phys. Soc. Lond. 4, 325–342 (1880)

    Article  Google Scholar 

  2. Chien, C. L. & Westgate, C. R. The Hall Effect and its Applications (Plenum, 1980)

  3. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010)

    Article  ADS  Google Scholar 

  4. Shindou, R. & Nagaosa, N. Orbital ferromagnetism and anomalous Hall effect in antiferromagnets on the distorted fcc lattice. Phys. Rev. Lett. 87, 116801 (2001)

    Article  ADS  CAS  Google Scholar 

  5. Metalidis, G. & Bruno, P. Topological Hall effect studied in simple models. Phys. Rev. B 74, 045327 (2006)

    Article  ADS  Google Scholar 

  6. Martin, I. & Batista, C. D. Itinerant electron-driven chiral magnetic ordering and spontaneous quantum Hall effect in triangular lattice models. Phys. Rev. Lett. 101, 156402 (2008)

    Article  ADS  Google Scholar 

  7. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014)

    Article  ADS  Google Scholar 

  8. Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014)

    Article  ADS  Google Scholar 

  9. Machida, Y., Nakatsuji, S., Onoda, S., Tayama, T. & Sakakibara, T. Time-reversal symmetry breaking and spontaneous Hall effect without magnetic dipole order. Nature 463, 210–213 (2010)

    Article  ADS  CAS  Google Scholar 

  10. Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn 51, 2478–2486 (1982)

    Article  ADS  CAS  Google Scholar 

  11. Brown, P. J., Nunez, V., Tasset, F., Forsyth, J. B. & Radhakrishna, P. Determination of the magnetic structure of Mn3Sn using generalized neutron polarization analysis. J. Phys. Condens. Matter 2, 9409–9422 (1990)

    Article  ADS  CAS  Google Scholar 

  12. Nagamiya, T., Tomiyoshi, S. & Yamaguchi, Y. Triangular spin configuration and weak ferromagnetism of Mn3Sn and Mn3Ge. Solid State Commun. 42, 385–388 (1982)

    Article  ADS  CAS  Google Scholar 

  13. Krén, E., Paitz, J., Zimmer, G. & Zsoldos, É. Study of the magnetic phase transformation in the Mn3Sn phase. Physica B 80, 226–230 (1975)

    Article  Google Scholar 

  14. Ohmori, H., Tomiyoshi, S., Yamauchi, H. & Yamamoto, H. Spin structure and weak ferromagnetism of Mn3Sn. J. Magn. Magn. Mater. 70, 249–251 (1987)

    Article  ADS  Google Scholar 

  15. Tomiyoshi, S., Abe, S., Yamaguchi, Y., Yamauchi, H. & Yamamoto, H. Triangular spin structure and weak ferromagnetism of Mn3Sn at low temperature. J. Magn. Magn. Mater. 54–57, 1001–1002 (1986)

    Article  ADS  Google Scholar 

  16. Feng, W. J. et al. Glassy ferromagnetism in Ni3Sn-type Mn3.1Sn0.9 . Phys. Rev. B 73, 205105 (2006)

    Article  ADS  Google Scholar 

  17. Miyasato, T. et al. Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets. Phys. Rev. Lett. 99, 086602 (2007)

    Article  ADS  CAS  Google Scholar 

  18. Neubauer, A., Pfleiderer, C., Ritz, R., Niklowitz, P. G. & Böni, P. Hall effect and magnetoresistance in MnSi. Physica B 404, 3163–3166 (2009)

    Article  ADS  CAS  Google Scholar 

  19. Manyala, N. et al. Large anomalous Hall effect in a silicon-based magnetic semiconductor. Nature Mater. 3, 255–262 (2004)

    Article  ADS  CAS  Google Scholar 

  20. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  21. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011)

    Article  ADS  Google Scholar 

  22. Burkov, A. A. & Balents, L. Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011)

    Article  ADS  CAS  Google Scholar 

  23. Chappert, C., Fert, A. & Nguyen Van Dau, F. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007)

    Article  ADS  CAS  Google Scholar 

  24. Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006)

    Article  ADS  Google Scholar 

  25. Shick, A. B., Khmelevskyi, S., Mryasov, O. N., Wunderlich, J. & Jungwirth, T. Spin-orbit coupling induced anisotropy effects in bimetallic antiferromagnets: a route towards antiferromagnetic spintronics. Phys. Rev. B 81, 212409 (2010)

    Article  ADS  Google Scholar 

  26. MacDonald, A. H. & Tsoi, M. Antiferromagnetic metal spintronics. Phil. Trans. R. Soc. A 369, 3098–3114 (2011)

    Article  ADS  CAS  Google Scholar 

  27. Park, B. G. et al. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction. Nature Mater. 10, 347–351 (2011)

    Article  ADS  CAS  Google Scholar 

  28. Marti, X. et al. Room-temperature antiferromagnetic memory resistor. Nature Mater. 13, 367–374 (2014)

    Article  ADS  CAS  Google Scholar 

  29. Gomonay, E. V. & Loktev, V. M. Spintronics of antiferromagnetic systems. Low Temp. Phys. 40, 17–35 (2014)

    Article  ADS  CAS  Google Scholar 

  30. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999)

    Article  ADS  CAS  Google Scholar 

  31. Dheer, P. N. Galvanomagnetic effects in iron whiskers. Phys. Rev. 156, 637–644 (1967)

    Article  ADS  CAS  Google Scholar 

  32. Jan, J.-P. & Gijsman, H. M. L’effet Hall du fer et du nickel aux basses températures. Physica 18, 339–355 (1952)

    Article  ADS  CAS  Google Scholar 

  33. Husmann, A. & Singh, L. J. Temperature dependence of the anomalous Hall conductivity in the Heusler alloy Co2CrAl. Phys. Rev. B 73, 172417 (2006)

    Article  ADS  Google Scholar 

  34. Chun, S. H. et al. Interplay between carrier and impurity concentrations in annealed Ga1–xMnxAs: intrinsic anomalous Hall effect. Phys. Rev. Lett. 98, 026601 (2007)

    Article  ADS  CAS  Google Scholar 

  35. Onose, Y. & Tokura, Y. Doping dependence of the anomalous Hall effect in La1–xSrxCoO3 . Phys. Rev. B 73, 174421 (2006)

    Article  ADS  Google Scholar 

  36. Sürgers, C., Fischer, G., Winkel, P. & v. Löhneysen, H. Large topological Hall effect in the non-collinear phase of an antiferromagnet. Nature Commun. 5, 3400 (2014)

Download references

Acknowledgements

We thank M. Ikhlas and A. Nevidomskyy for discussions. This work was partially supported by PRESTO, by the Japan Science and Technology Agency, by Grants-in-Aid for Scientific Research (no. 25707030) and the Program for Advancing Strategic International Networks to Accelerate the Circulation of Talented Researchers (no. R2604), and by Grants-in-Aid for Scientific Research on Innovative Areas (15H05882, 15H05883) from the Japanese Society for the Promotion of Science. The use of the facilities of the Materials Design and Characterization Laboratory at the Institute for Solid State Physics, The University of Tokyo, is acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

S.N. planned the experimental project, and S.N. and N.K. performed experiments and collected data. S.N., N.K. and T.H. wrote the paper and prepared figures; all authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Satoru Nakatsuji.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Normal and inverse triangular spin structures.

ad, Examples of normal (a, b) and inverse (c, d) triangular spin structures. An inverse triangular spin structure has the opposite sign of the vector spin chirality to a normal one. As each Mn moment has the local easy-axis parallel to the direction towards its in-plane nearest-neighbour Sn sites, the case shown in d is realized in Mn3Sn (refs 10, 11, 12).

Extended Data Figure 2 Estimation of the ordinary Hall effect using the c-axis components of the Hall resistivity.

a, b, Temperature dependence of the Hall resistivity divided by B, ρH/B (a), and the susceptibility M/B obtained under a field of 0.1 T along the c axis (b). Measurements were made above T = 50 K, where no spontaneous components were observed. c, Plot of ρH/B versus M/B; here the temperature is an implicit parameter. The solid line indicates a linear fit to equation (1), with defined in Methods.

Extended Data Figure 3 Magnetization dependence of the AF-driven Hall effect.

Figure shows anisotropic isothermal curves of as a function of M at 300 K.

Extended Data Table 1 Hall effect parameters for ferromagnets and antiferromagnets

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015). https://doi.org/10.1038/nature15723

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature15723

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing