Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flows of X-ray gas reveal the disruption of a star by a massive black hole


Tidal forces close to massive black holes can violently disrupt stars that make a close approach. These extreme events are discovered via bright X-ray1,2,3,4 and optical/ultraviolet5,6 flares in galactic centres. Prior studies based on modelling decaying flux trends have been able to estimate broad properties, such as the mass accretion rate6,7. Here we report the detection of flows of hot, ionized gas in high-resolution X-ray spectra of a nearby tidal disruption event, ASASSN-14li in the galaxy PGC 043234. Variability within the absorption-dominated spectra indicates that the gas is relatively close to the black hole. Narrow linewidths indicate that the gas does not stretch over a large range of radii, giving a low volume filling factor. Modest outflow speeds of a few hundred kilometres per second are observed; these are below the escape speed from the radius set by variability. The gas flow is consistent with a rotating wind from the inner, super-Eddington region of a nascent accretion disk, or with a filament of disrupted stellar gas near to the apocentre of an elliptical orbit. Flows of this sort are predicted by fundamental analytical theory8 and more recent numerical simulations7,9,10,11,12,13,14.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The multi-wavelength light curves of ASASSN-14li clearly signal a tidal disruption event.
Figure 2: The high-resolution X-ray spectra of ASASSN-14li reveal blueshifted absorption lines.
Figure 3: The temperature of the blackbody continuum emission from ASASSN-14li is steady over time.


  1. Bade, N., Komossa, S. & Dahlem, M. Detection of an extremely soft X-ray outburst in the HII-like nucleus of NGC 5905. Astron. Astrophys. 309, L35–L38 (1996)

    ADS  Google Scholar 

  2. Komossa, S. & Greiner, J. Discovery of a giant and luminous X-ray outburst from the optically inactive galaxy pair RX J1242.6–1119. Astron. Astrophys. 349, L45–L48 (1999)

    ADS  CAS  Google Scholar 

  3. Esquej, P. et al. Candidate tidal disruption events from the XMM-Newton slew survey. Astron. Astrophys. 462, L49–L52 (2007)

    Article  ADS  CAS  Google Scholar 

  4. Cappelluti, N. et al. A candidate tidal disruption event in the Galaxy cluster Abell 3571. Astron. Astrophys. 495, L9–L12 (2009)

    Article  ADS  CAS  Google Scholar 

  5. Gezari, S. et al. UV/optical detections of candidate tidal disruption events by GALEX and CFHTLS. Astrophys. J. 676, 944–969 (2008)

    Article  ADS  CAS  Google Scholar 

  6. Gezari, S. et al. An ultraviolet-optical flare from the tidal disruption of a helium-rich stellar core. Nature 485, 217–220 (2012)

    Article  ADS  CAS  Google Scholar 

  7. Guillochon, J., Manukian, H. & Ramirez-Ruiz, E. PS1–10jh: the disruption of a main-sequence star of near-solar composition. Astrophys. J. 783, 23 (2014)

    Article  ADS  Google Scholar 

  8. Rees, M. J. Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333, 523–528 (1988)

    Article  ADS  Google Scholar 

  9. Strubbe, L. E. & Quataert, E. Optical flares from the tidal disruption of stars by massive black holes. Mon. Not. R. Astron. Soc. 400, 2070–2084 (2009)

    Article  ADS  Google Scholar 

  10. Lodato, G., King, A. R. & Pringle, J. E. Stellar disruption by a supermassive black hole: is the light curve really proportional to t−5/3? Mon. Not. R. Astron. Soc. 392, 332–340 (2009)

    Article  ADS  CAS  Google Scholar 

  11. Lodato, G. & Rossi, E. M. Multiband light curves of tidal disruption events. Mon. Not. R. Astron. Soc. 410, 359–367 (2011)

    Article  ADS  CAS  Google Scholar 

  12. Strubbe, L. E. & Quataert, E. Spectroscopic signatures of the tidal disruption of stars by massive black holes. Mon. Not. R. Astron. Soc. 415, 168–180 (2011)

    Article  ADS  CAS  Google Scholar 

  13. Shiokawa, H., Krolik, J. H., Cheng, R. M., Piran, T. & Noble, S. C. General relativistic hydrodynamic simulation of accretion flow from a stellar tidal disruption. Astrophys. J. 804, 85 (2015)

    Article  ADS  Google Scholar 

  14. Miller, M. C. Disk winds as an explanation for slowly evolving temperatures in tidal disruption events. Astrophys. J. 805, 83 (2015)

    Article  ADS  Google Scholar 

  15. Jose, J. et al. ASAS-SN discovery of an unusual nuclear transient in PGC 043234. Astron. Telegr. 6777, 1 (2014)

    ADS  Google Scholar 

  16. Gehrels, N. et al. The Swift Gamma-Ray Burst Mission. Astrophys. J. 611, 1005–1020 (2004)

    Article  ADS  CAS  Google Scholar 

  17. Burrows, D. N. et al. The Swift X-ray telescope. Space Sci. Rev. 120, 165–195 (2005)

    Article  ADS  Google Scholar 

  18. Voges, W. et al. The ROSAT All-Sky Survey bright source catalogue. Astron. Astrophys. 349, 389–405 (1999)

    ADS  Google Scholar 

  19. Phinney, E. S. in The Center of the Galaxy (ed. Morris, M. ) IAU Symp., 136, 543–553 (Kluwer Academic, 1989)

    Book  Google Scholar 

  20. Kaastra, J. S., Mewe, R. & Nieuwenhuijzen, H. in UV and X-ray Spectroscopy of Astrophysical and Laboratory Plasmas (eds Yamashita, K. & Watanabe, T. ) 411–414 (Universal Academy Press, Tokyo, 1996)

    Google Scholar 

  21. Loeb, A. & Ulmer, A. Optical appearance of the debris of a star disrupted by a massive black hole. Astrophys. J. 489, 573–578 (1997)

    Article  ADS  Google Scholar 

  22. Piran, T., Svirski, G., Krolik, J., Cheng, R. M. & Shiokawa, H. Disk formation versus disk accretion—what powers tidal disruption events? Astrophys. J. 806, 164 (2015)

    Article  ADS  Google Scholar 

  23. Shaviv, N. J. The theory of steady-state super-Eddington winds and its application to novae. Mon. Not. R. Astron. Soc. 326, 126–146 (2001)

    Article  ADS  Google Scholar 

  24. Ramírez, J. M. Kinematics from spectral lines for AGN outflows based on time-independent radiation-driven wind theory. Rev. Mex. Astron. Astrofis. 47, 385–399 (2011)

    ADS  Google Scholar 

  25. Holoien, T. W.-S. et al. ASASSN-14ae: a tidal disruption event at 200 Mpc. Mon. Not. R. Astron. Soc. 445, 3263–3277 (2014)

    Article  ADS  CAS  Google Scholar 

  26. Guillochon, J. & Ramirez-Ruiz, E. A dark year for tidal disruption events. Astrophys. J. 809, 166 (2015)

    Article  ADS  Google Scholar 

  27. Stone, N. & Loeb, A. Observing Lense-Thirring precession in tidal disruption flares. Phys. Rev. Lett. 108, 061302 (2012)

    Article  ADS  Google Scholar 

  28. Kaastra, J. S., Mewe, R. & Raassen, T. New results on X-ray models and atomic data. Highlights Astron. 13, 648–650 (2005)

    Article  ADS  CAS  Google Scholar 

  29. Ahn, C. P. et al. The Tenth Data Release of the Sloan Digital Sky Survey: first spectroscopic data from the SDSS-III Apache Point Observatory Galactic Evolution Experiment. Astrophys. J. Suppl. Ser. 211, 17 (2014)

    Article  ADS  Google Scholar 

  30. Skrutskie, M. F. et al. The Two Micron All Sky Survey (2MASS). Astron. J. 131, 1163–1183 (2006)

    Article  ADS  Google Scholar 

  31. Martin, D. C. et al. The Galaxy Evolution Explorer: a space ultraviolet survey mission. Astrophys. J. 619, L1–L6 (2005)

    Article  ADS  CAS  Google Scholar 

  32. Kriek, M. et al. An ultra-deep near-infrared spectrum of a compact quiescent galaxy at z = 2.2. Astrophys. J. 700, 221–231 (2009)

    Article  ADS  CAS  Google Scholar 

  33. Bruzual, G. & Charlot, S. Stellar population synthesis at the resolution of 2003. Mon. Not. R. Astron. Soc. 344, 1000–1028 (2003)

    Article  ADS  Google Scholar 

  34. Poole, T. S. et al. Photometric calibration of the Swift ultraviolet/optical telescope. Mon. Not. R. Astron. Soc. 383, 627–645 (2008)

    Article  ADS  CAS  Google Scholar 

  35. Breeveld, A. A. et al. An updated ultraviolet calibration for the Swift/UVOT. AIP Conf. Ser. (eds McEnery, J. E., Racusin, J. L . & Gehrels, N. ), 1358, 373–376 (American Institute of Physics, 2011)

    Google Scholar 

  36. Guillochon, J. & Ramirez-Ruiz, E. Hydrodynamical simulations to determine the feeding rate of black holes by the tidal disruption of stars: the importance of the impact parameter and stellar structure. Astrophys. J. 767, 25 (2013)

    Article  ADS  Google Scholar 

  37. Vinkó, J. et al. A luminous, fast rising UV-transient discovered by ROTSE: a tidal disruption event? Astrophys. J. 798, 12 (2015)

    Article  ADS  Google Scholar 

Download references


We thank Chandra Director B. Wilkes and the Chandra team for accepting our request for Director’s Discretionary Time, XMM-Newton Director N. Schartel and the XMM-Newton team for executing our approved target-of-opportunity program, and Swift Director N. Gehrels and the Swift team for monitoring this important source. J.M.M. is supported by NASA funding, through Chandra and XMM-Newton guest observer programs. The SRON Netherlands Institute for Space Research is supported by The Netherlands Organization for Scientific Research (NWO). J.J.D. was supported by NASA contract NAS8-03060 to the Chandra X-ray Center. W.P.M. is grateful for support by the University of Alabama Research Stimulation Program.

Author information

Authors and Affiliations



J.M.M. led the Chandra and XMM-Newton data reduction and analysis, with contributions from J.S.K., J.J.D. and J.d.P. M.T.R. led the Swift data reduction and analysis (with help from S.B.C., S.G. and R.M.). M.C.M., E.R.-R. and J.G. provided theoretical insights. G.B., K.G., J.I., A.L., D.M., W.P.M., P.O’B., F.P., T.S. and N.T. contributed to the discussion and interpretation.

Corresponding author

Correspondence to Jon M. Miller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miller, J., Kaastra, J., Miller, M. et al. Flows of X-ray gas reveal the disruption of a star by a massive black hole. Nature 526, 542–545 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing