Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling

Abstract

Intracellular lipopolysaccharide from Gram-negative bacteria including Escherichia coli, Salmonella typhimurium, Shigella flexneri, and Burkholderia thailandensis activates mouse caspase-11, causing pyroptotic cell death, interleukin-1β processing, and lethal septic shock. How caspase-11 executes these downstream signalling events is largely unknown. Here we show that gasdermin D is essential for caspase-11-dependent pyroptosis and interleukin-1β maturation. A forward genetic screen with ethyl-N-nitrosourea-mutagenized mice links Gsdmd to the intracellular lipopolysaccharide response. Macrophages from Gsdmd−/− mice generated by gene targeting also exhibit defective pyroptosis and interleukin-1β secretion induced by cytoplasmic lipopolysaccharide or Gram-negative bacteria. In addition, Gsdmd−/− mice are protected from a lethal dose of lipopolysaccharide. Mechanistically, caspase-11 cleaves gasdermin D, and the resulting amino-terminal fragment promotes both pyroptosis and NLRP3-dependent activation of caspase-1 in a cell-intrinsic manner. Our data identify gasdermin D as a critical target of caspase-11 and a key mediator of the host response against Gram-negative bacteria.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Gsdmd mutation I105N abolishes non-canonical inflammasome signalling.
Figure 2: Gsdmd is essential for non-canonical inflammasome signalling.
Figure 3: Caspase-11 cleaves Gsdmd.
Figure 4: Cell-intrinsic NLRP3 inflammasome activation.
Figure 5: Role of Gsdmd in canonical inflammasome signalling.
Figure 6: Gsdmd deficiency protects against lethal sepsis.

References

  1. Kayagaki, N. et al. Non-canonical inflammasome activation targets caspase-11. Nature 479, 117–121 (2011)

    ADS  CAS  Article  PubMed  Google Scholar 

  2. Broz, P. et al. Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature 490, 288–291 (2012)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Rathinam, V. A. et al. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150, 606–619 (2012)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. Aachoui, Y. et al. Caspase-11 protects against bacteria that escape the vacuole. Science 339, 975–978 (2013)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Mariathasan, S. et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430, 213–218 (2004)

    ADS  CAS  PubMed  Article  Google Scholar 

  6. Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006)

    ADS  CAS  Article  PubMed  Google Scholar 

  7. Kayagaki, N. et al. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science 341, 1246–1249 (2013)

    ADS  CAS  Article  PubMed  Google Scholar 

  8. Hagar, J. A., Powell, D. A., Aachoui, Y., Ernst, R. K. & Miao, E. A. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341, 1250–1253 (2013)

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Shi, J. et al. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514, 187–192 (2014)

    ADS  CAS  Article  PubMed  Google Scholar 

  10. Nelms, K. A. & Goodnow, C. C. Genome-wide ENU mutagenesis to reveal immune regulators. Immunity 15, 409–418 (2001)

    CAS  PubMed  Article  Google Scholar 

  11. Xu, H. et al. Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513, 237–241 (2014)

    ADS  CAS  Article  PubMed  Google Scholar 

  12. Katoh, M. & Katoh, M. Identification and characterization of human DFNA5L, mouse Dfna5l, and rat Dfna5l genes in silico. Int. J. Oncol. 25, 765–770 (2004)

    CAS  PubMed  Google Scholar 

  13. Fujii, T. et al. Gasdermin D (Gsdmd) is dispensable for mouse intestinal epithelium development. Genesis 46, 418–423 (2008)

    CAS  Article  PubMed  Google Scholar 

  14. Tamura, M. et al. Members of a novel gene family, Gsdm, are expressed exclusively in the epithelium of the skin and gastrointestinal tract in a highly tissue-specific manner. Genomics 89, 618–629 (2007)

    CAS  PubMed  Article  Google Scholar 

  15. Roberts, T. L. et al. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323, 1057–1060 (2009)

    ADS  CAS  PubMed  Article  Google Scholar 

  16. Fernandes-Alnemri, T. et al. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nature Immunol. 11, 385–393 (2010)

    CAS  Article  Google Scholar 

  17. Hornung, V. et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458, 514–518 (2009)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Franchi, L. et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1β in salmonella-infected macrophages. Nature Immunol. 7, 576–582 (2006)

    CAS  Article  Google Scholar 

  19. Meixenberger, K. et al. Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1β, depending on listeriolysin O and NLRP3. J. Immunol. 184, 922–930 (2010)

    CAS  PubMed  Article  Google Scholar 

  20. Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010)

    CAS  PubMed  Article  Google Scholar 

  21. Martinon, F., Petrilli, V., Mayor, A., Tardivel, A. & Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440, 237–241 (2006)

    ADS  CAS  PubMed  Article  Google Scholar 

  22. Hornung, V. et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nature Immunol. 9, 847–856 (2008)

    CAS  Article  Google Scholar 

  23. Sutterwala, F. S. et al. Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J. Exp. Med. 204, 3235–3245 (2007)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Casson, C. N. et al. Human caspase-4 mediates noncanonical inflammasome activation against gram-negative bacterial pathogens. Proc. Natl Acad. Sci. USA 112, 6688–6693 (2015)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Sakamaki, K. & Satou, Y. Caspases: evolutionary aspects of their functions in vertebrates. J. Fish Biol. 74, 727–753 (2009)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Ashkenazi, A. & Dixit, V. M. Death receptors: signaling and modulation. Science 281, 1305–1308 (1998)

    CAS  PubMed  Article  Google Scholar 

  27. Thornberry, N. A. et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J. Biol. Chem. 272, 17907–17911 (1997)

    CAS  PubMed  Article  Google Scholar 

  28. Kang, S. J. et al. Dual role of caspase-11 in mediating activation of caspase-1 and caspase-3 under pathological conditions. J. Cell Biol. 149, 613–622 (2000)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Kaczmarek, A., Vandenabeele, P. & Krysko, D. V. Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209–223 (2013)

    CAS  PubMed  Article  Google Scholar 

  30. Rühl, S. & Broz, P. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K+ efflux. Eur. J. Immunol. http://dx.doi.org/10.1002/eji.201545772 (2015)

  31. Agard, N. J., Maltby, D. & Wells, J. A. Inflammatory stimuli regulate caspase substrate profiles. Mol. Cell. Proteomics 9, 880–893 (2010)

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Angosto, D. et al. Evolution of inflammasome functions in vertebrates: Inflammasome and caspase-1 trigger fish macrophage cell death but are dispensable for the processing of IL-1β. Innate Immun. 18, 815–824 (2012)

    PubMed  Article  CAS  Google Scholar 

  33. Thornberry, N. A. et al. A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356, 768–774 (1992)

    ADS  CAS  Article  PubMed  Google Scholar 

  34. Eder, C. Mechanisms of interleukin-1β release. Immunobiology 214, 543–553 (2009)

    CAS  PubMed  Article  Google Scholar 

  35. Liu, T. et al. Single-cell imaging of caspase-1 dynamics reveals an all-or-none inflammasome signaling response. Cell Rep. 8, 974–982 (2014)

    CAS  PubMed  Article  Google Scholar 

  36. Wang, S. et al. Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92, 501–509 (1998)

    CAS  PubMed  Article  Google Scholar 

  37. Miao, E. A. et al. Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nature Immunol. 11, 1136–1142 (2010)

    CAS  Article  Google Scholar 

  38. Bergsbaken, T., Fink, S. L. & Cookson, B. T. Pyroptosis: host cell death and inflammation. Nature Rev. Microbiol. 7, 99–109 (2009)

    CAS  Article  Google Scholar 

  39. Xie, H. X. et al. Edwardsiella tarda-induced cytotoxicity depends on its type III secretion system and flagellin. Infect. Immun. 82, 3436–3445 (2014)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. Py, B. F. et al. Caspase-11 controls interleukin-1β release through degradation of TRPC1. Cell Rep. 6, 1122–1128 (2014)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Andrews, T. D. et al. Massively parallel sequencing of the mouse exome to accurately identify rare, induced mutations: an immediate source for thousands of new mouse models. Open Biol. 2, 120061 (2012)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Carlson, R. W., Forsberg, L. S. & Kannenberg, E. L. Lipopolysaccharides in Rhizobium-legume symbioses. Subcell. Biochem. 53, 339–386 (2010)

    CAS  PubMed  Article  Google Scholar 

  43. Tamayo, R. et al. Identification of cptA, a PmrA-regulated locus required for phosphoethanolamine modification of the Salmonella enterica serovar typhimurium lipopolysaccharide core. J. Bacteriol. 187, 3391–3399 (2005)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Edman, P. A method for the determination of amino acid sequence in peptides. Arch. Biochem. 22, 475 (1949)

    CAS  PubMed  Google Scholar 

  45. Henzel, W. J., Tropea, J. & Dupont, D. Protein identification using 20-minute Edman cycles and sequence mixture analysis. Anal. Biochem. 267, 148–160 (1999)

    CAS  PubMed  Article  Google Scholar 

  46. Wang, G. G. et al. Quantitative production of macrophages or neutrophils ex vivo using conditional Hoxb8. Nature Methods 3, 287–293 (2006)

    CAS  PubMed  Article  Google Scholar 

  47. Qu, Y. et al. Phosphorylation of NLRC4 is critical for inflammasome activation. Nature 490, 539–542 (2012)

    ADS  CAS  PubMed  Article  Google Scholar 

  48. Rosas, M. et al. Hoxb8 conditionally immortalised macrophage lines model inflammatory monocytic cells with important similarity to dendritic cells. Eur. J. Immunol. 41, 356–365 (2011)

    CAS  PubMed  Article  Google Scholar 

Download references

Acknowledgements

We thank the staff of the Australian Phenomics Facility, Genentech Transgenic Technology and FACS cores, and K. Bowman, J. Payandeh, E. Dueber, R. Aglietti, A. Gupta and A. Peterson for technical expertise and discussion, K. Newton for manuscript editing, A. Muszyński, L. S. Forsberg, and R. W. Carlson for S. typhimurium LPS. Most authors were employees of Genentech, Inc.

Author information

Authors and Affiliations

Authors

Contributions

N.K., I.B.S., B.L.L., K.O., T.C., B.H., P.S.L., Q.T.P., J.R.L., H.L., J.W., S.K., J.Z., W.P.L., S.J.S., L.X.M., L.F., Y.Z. and E.M.B. designed and performed experiments. K.A. and S.W. generated Gsdmd−/− mice. S.W. and M.R.-G. generated Casp1−/− mice. N.K. and E.M.B. prepared the manuscript. N.K., G.S.S., E.M.B., C.C.G. and V.M.D. contributed to the study design and data analyses.

Corresponding authors

Correspondence to Nobuhiko Kayagaki or Vishva M. Dixit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Homozygosity for a Gsdmd point mutation correlates with unresponsiveness to cytoplasmic LPS.

Gsdmd genotypes and screen phenotypes of mice derived from IGL1351 pedigree (top). Only the identification numbers of screened animals are shown. Thirty-nine SNV genotypes mutated in the pedigree and their phenotypes (bottom). Hits represent mice whose peritoneal macrophages showed attenuated LPS-induced IL-1β secretion to a similar extent as Casp11 mutant 129 strain. Mutant, homozygous.

Extended Data Figure 2 GsdmdI105N/I105N BMDMs respond normally to TLR agonists.

a, RANTES production from BMDMs cultured for 16 h with medium alone (cont) or the TLR stimulants indicated. b, Western blots of BMDM extracts and supernatants at 6 h after LPS electroporation. Graph shows the mean ± s.d. of triplicate wells and represents three independent experiments. For source gel, see Supplementary Fig. 2.

Extended Data Figure 3 Non-canonical inflammasome signalling requires Gsdmd.

a, Western blots of BMDMs cultured with or without Pam3CSK4 for 6 h. Gsdmd−/−1 and Gsdmd−/−2 are independent knockout strains. bd, IL-1β and LDH released from BMDMs after 16 h. P. aeruginosa infection was analysed at 4 h. e, RANTES production from BMDMs after 16 h. f, IL-1β and LDH released from BMDMs at 16 h after LPS electroporation, LPS plus cholera toxin B (Ctb) complex, or S. typhimurium LPS transfection. g, i, Western blots of EA.hy926 (g) or THP-1 cells (i). h, LDH released from control (parental or luciferase gRNA), GSDMD knockout (KO), or CASP4 knockout THP-1 cells at 16 h after LPS electroporation or dsDNA transfection. Graphs show mean ± s.d. of triplicate wells and represent three independent experiments. For source gels of a, g and i, see Supplementary Information Fig. 2.

Extended Data Figure 4 Gsdmd cleavage site.

a, Alignment of Gsdmd amino acid sequences. The conserved Gsdmd cleavage site (D276 in mouse) is boxed in red. b, Immunoblots of BMDM extracts and supernatants at 16 h after LPS/Ctb treatment. A non-specific band is indicated with an asterisk. Cont, Ctb alone. For source gel, see Supplementary Fig. 3.

Extended Data Figure 5 Human GSDMD processing.

a, Western blots of THP-1 extracts and supernatants at 3 h after LPS electroporation. b, Western blots of human GSDMD/HEK293T stable transfectants at 24 h after transient transfection of the indicated plasmids. A non-specific band is indicated with an asterisk. c, Cytotoxicity of the human proteins indicated at 24 h after transient transfection of HEK293T cells. Numbers indicate nanograms of plasmid transfected. Western blots (right) indicate protein expression. Expression of the N-terminal fragment (1–275) was below detection levels, presumably due to its potent toxicity. Graph shows mean ± s.d. of triplicate wells and represents three independent experiments. For source gels of a, b and c, see Supplementary Fig. 3.

Extended Data Figure 6 BMDMs stimulated with cytoplasmic LPS do not release NLRP3-stimulating damage-associated molecular pattern activity.

a, Paracrine signalling hypothesis. DAMP, damage-associated molecular pattern. b, LDH released from BMDMs at 16 h after LPS transfection or electroporation. c, IL-1β released from Casp11−/− BMDMs at 16 h after stimulation with ATP or incubation with Il1b−/− BMDM culture supernatants derived in b. d, LDH released from 1:1 mixed cultures of the indicated BMDMs at 16 h after stimulation. Graphs show mean ± s.d. of triplicate wells and represent three independent experiments.

Extended Data Figure 7 Canonical inflammasome stimuli induce caspase-1-dependent processing of Gsdmd.

a, Western blots of BMDM extracts and supernatants at 8 h after stimulation. Cont, medium alone. LPS, LPS + Ctb. Asterisk indicates a non-specific band. b, Western blots of Gsdmd−/− BMDMs. Gsdmd−/−3 and Gsdmd−/−4 are independent knockout strains (Extended Data Fig. 8). c, IL-1β released from BMDMs. LPS, LPS electroporation. Graphs show mean ± s.d. of triplicate wells and represent three independent experiments. d, Immunoblots of Casp1−/− BMDMs stimulated with Pam3CSK4 for 5 h. For source gels of a, b and d, see Supplementary Fig. 3.

Extended Data Figure 8 Gsdmd−/− alleles.

Gsdmd−/− animals used in this study were compound or homozygous F1 and F2 knockouts generated from mosaic F0 founder and F1 crosses, respectively. gRNA target sequences are highlighted in bold. Deleted bases are indicated by red hyphens. Inserted nucleic acids are highlighted in red.

Extended Data Table 1 Bioinformatic analysis of ENU-induced SNVs present in IGL1351 pedigree
Extended Data Table 2 Adjusted P values of Fig. 6

Supplementary information

Supplementary Information

This file contains the Source Gels as follows: Supplementary Figure 1 - Main Figures 1c, 1d, 2b, 3a, 3c, 3e, 4a; Supplementary Figure 2 - Main Figures 5a, 5b, and Extended Data Figures 2b, 3a, 3g 3i; Supplementary Figure 3 – Extended Data Figures 4b, 5a, 5b, 5c, 7a, 7b, 7d. (PDF 2562 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kayagaki, N., Stowe, I., Lee, B. et al. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature 526, 666–671 (2015). https://doi.org/10.1038/nature15541

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature15541

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing