Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The quiet revolution of numerical weather prediction

Abstract

Advances in numerical weather prediction represent a quiet revolution because they have resulted from a steady accumulation of scientific knowledge and technological advances over many years that, with only a few exceptions, have not been associated with the aura of fundamental physics breakthroughs. Nonetheless, the impact of numerical weather prediction is among the greatest of any area of physical science. As a computational problem, global weather prediction is comparable to the simulation of the human brain and of the evolution of the early Universe, and it is performed every day at major operational centres across the world.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: A measure of forecast skill at three-, five-, seven- and ten-day ranges, computed over the extra-tropical northern and southern hemispheres.
Figure 2: Physical processes of importance to weather prediction.
Figure 3: Schematic diagram of 36-h ensemble forecasts used to estimate the probability of precipitation over the UK.
Figure 4: Schematic of the ensemble analysis and forecast cycle.
Figure 5: CPU and power requirements as a function of NWP model resolution.
Figure 6: Key challenge areas for NWP in the future.

References

  1. Abbe, C. The physical basis of long-range weather forecasts. Mon. Weath. Rev. 29, 551–561 (1901)

    ADS  Article  Google Scholar 

  2. Bjerknes, V. Das Problem der Wettervorhersage betrachtet vom Standpunkt der Mechanik und Physik. Meteorol. Z. 21, 1–7 (1904)

    MATH  Google Scholar 

  3. Lazo, J. K., Morss, R. E. & Demuth, J. L. 300 billion served: sources, perceptions, uses, and values of weather forecasts. Bull. Am. Meteorol. Soc. 90, 785–798 (2009)

    ADS  Article  Google Scholar 

  4. Kalnay, E. Atmospheric Modeling, Data Assimilation and Predictability (Cambridge Univ. Press, 2003) A classic textbook on the fundamentals of modern weather prediction.

    Google Scholar 

  5. Richardson, L. F. Weather Prediction by Numerical Process (Cambridge Univ. Press, 1922) Already in the early 1920s the author proposed numerical algorithms to solve the NWP partial differential equations using a huge staff of humans as computers.

    MATH  Google Scholar 

  6. Charney, J. G., Fjoertoft, R. & Neumann, J. v. Numerical integration of the barotropic vorticity equation. Tellus 2, 237–254 (1950) The first calculation of a numerical weather prediction on an electronic computer.

    ADS  MathSciNet  Article  Google Scholar 

  7. Bolin, B. Numerical forecasting with the barotropic model. Tellus 7, 27–49 (1955)

    ADS  MathSciNet  Article  Google Scholar 

  8. Lynch, P. The origins of computer weather prediction and climate modeling. J. Comput. Phys. 227, 3431–3444 (2008)

    ADS  MathSciNet  MATH  Article  Google Scholar 

  9. Robert, A. J. A semi-Lagrangian and semi-implicit numerical integration scheme for the primitive meteorological equations. J. Meteorol. Soc. Jpn 60, 319–324 (1982) This seminal paper presents a numerical method used worldwide since the 1990s to solve the partial differential equations with a significantly longer time step thus greatly enhancing efficiency.

    Article  Google Scholar 

  10. Staniforth, A., Wood, N. & Côté, J. A simple comparison of four physics–dynamics coupling schemes. Mon. Weath. Rev. 130, 3129–3135 (2002)

    ADS  Article  Google Scholar 

  11. Williamson, D. L. The evolution of dynamical cores for global atmospheric models. J. Meteorol. Soc. Jpn B 85, 241–269 (2007)

    Article  Google Scholar 

  12. Lorenz, E. N. Reflections on the conception, birth and childhood of numerical weather prediction. Annu. Rev. Earth Planet. Sci. 34, 37–45 (2006)

    ADS  CAS  Article  Google Scholar 

  13. Flato, G. et al. in Climate Change 2013 (eds Stocker, T. F. et al.) 741–866 (Cambridge Univ. Press, 2013)

    Google Scholar 

  14. Dudhia, J. A history of mesoscale model development. Asia-Pac. J. Atmos. Sci. 50, 121–131 (2014) Reviews the evolution of limited area modelling.

    ADS  Article  Google Scholar 

  15. Zhang, Y. Online-coupled meteorology and chemistry models: history, current status, and outlook. Atmos. Chem. Phys. 8, 2895–2932 (2008)

    ADS  CAS  Article  Google Scholar 

  16. Arakawa, A. Adjustment mechanisms in atmospheric motions. J. Meteorol. Soc. Jpn 75, 155–179 (1997)

    Article  Google Scholar 

  17. Williams, P. D. Modelling climate change: the role of unresolved processes. Phil. Trans. R. Soc. A 363, 2931–2946 (2005)

    ADS  PubMed  Article  Google Scholar 

  18. Grenier, H. & Bretherton, C. S. A moist PBL parameterization for large-scale models and its application to subtropical cloud-topped marine boundary layers. Mon. Weath. Rev. 129, 357–377 (2001)

    ADS  Article  Google Scholar 

  19. Arakawa, A. The cumulus parameterization problem: past, present, and future. J. Clim. 17, 2493–2525 (2004)Reviews the necessity and challenges of parameterizing sub-grid scale physical processes for cumulus clouds.

    ADS  Article  Google Scholar 

  20. Stensrud, D. J. Parameterization Schemes, Keys to Understanding Numerical Weather Prediction Models (Cambridge Univ. Press, 2007)

    MATH  Book  Google Scholar 

  21. Poincare, H. Science and Method ( T. Nelson, London, 1914)

    Google Scholar 

  22. Thompson, P. D. Uncertainty of initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus 9, 275–295 (1957)

    MathSciNet  Article  Google Scholar 

  23. Lorenz, E. N. Deterministic non-periodical flow. J. Atmos. Sci. 20, 130–141 (1963) One of the most influential papers establishing the fundamentals of chaos theory applied to numerical weather prediction.

    ADS  MATH  Article  Google Scholar 

  24. Slingo, J. & Palmer, T. N. Uncertainty in weather and climate prediction. Phil. Trans. R. Soc. A 369, 4751–4767 (2011)

    ADS  PubMed  MATH  Article  Google Scholar 

  25. Zhang, H. & Pu, Z. Beating the uncertainties: ensemble forecasting and ensemble based data assimilation. Adv. Meteorol. 2010, 432160 (2010)

    Google Scholar 

  26. Epstein, E. S. Stochastic-dynamic prediction. Tellus 21, 739–759 (1969)

    ADS  Article  Google Scholar 

  27. Leith, C. E. Theoretical skill of Monte Carlo forecasts. Mon. Weath. Rev. 102, 409–418 (1974)Discusses the estimation of atmospheric forecast uncertainties using a Monte Carlo approach based on an ensemble of perturbed numerical predictions.

    ADS  Article  Google Scholar 

  28. Ehrendorfer, M. Predicting the uncertainty of numerical weather forecasts: a review. Meteorol. Z. 6, 147–183 (1997)

    Article  Google Scholar 

  29. Palmer, T. N. Towards the probabilistic Earth-system simulator: a vision for the future of climate and weather prediction. Q. J. R. Meteorol. Soc. 138, 841–861 (2012)

    ADS  Article  Google Scholar 

  30. Lions, J. Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles (Dunod-Gauthier-Villars, Paris, 1968)

    MATH  Google Scholar 

  31. Lorenc, A. C. Analysis methods for numerical weather prediction. Q. J. R. Meteorol. Soc. 112, 1177–1194 (1986)

    ADS  Article  Google Scholar 

  32. Daley, R. Atmospheric Data Analysis (Cambridge Univ. Press, 1991)A comprehensive textbook on data assimilation and its application in atmospheric sciences.

    Google Scholar 

  33. Navon, I. M. in Data Assimilation for Atmospheric, Oceanic and Hydrologic Application (eds Park, S. K. & Xu, L. ) 21–65 (Springer, 2009)

    Book  Google Scholar 

  34. Courtier, P., Thepaut, J.-N. & Hollingsworth, A. A strategy for operational implementation of 4D-Var, using an incremental approach. Q. J. R. Meteorol. Soc. 120, 1367–1387 (1994)

    ADS  Article  Google Scholar 

  35. Rabier, F., Jaervinen, H., Klinker, E., Mahfouf, J.-F. & Simmons, A. The ECMWF operational implementation of four-dimensional variational assimilation. I: Experimental results with simplified physics. Q. J. R. Meteorol. Soc. 126, 1143–1170 (2000)

    ADS  Article  Google Scholar 

  36. Gauthier, P. & Thepaut, J.-N. Impact of the digital filter as a weak constraint in the preoperational 4DVAR assimilation system of Météo-France. Mon. Weath. Rev. 129, 2089–2102 (2001)

    ADS  Article  Google Scholar 

  37. Rawlins, F. et al. The Met Office global four-dimensional variational data assimilation scheme. Q. J. R. Meteorol. Soc. 133, 347–362 (2007)

    ADS  Article  Google Scholar 

  38. Kadowaki, T. A 4-dimensional variational assimilation system for the JMA Global Spectrum Model. CAS/JSC WGNE Res. Act. Atmos. Ocea. Modell. 34, 117–118 (2005)

    Google Scholar 

  39. Gauthier, P., Tanguay, M., Laroche, S., Pellerin, S. & Morneau, J. Extension of 3D-Var to 4D-Var: implementation of 4D-Var at the Meteorological Service of Canada. Mon. Weath. Rev. 135, 2339–2354 (2007)

    ADS  Article  Google Scholar 

  40. Xu, L., Rosmond, T. & Daley, R. Development of NAVDAS-AR: formulation and initial tests of the linear problem. Tellus A 57, 546–559 (2005)

    ADS  Article  Google Scholar 

  41. Saunders, R. W., Matricardi, M. & Brunel, P. An improved fast radiative transfer model for assimilation of satellite radiance observations. Q. J. R. Meteorol. Soc. 125, 1407–1425 (1999)

    ADS  Article  Google Scholar 

  42. Bauer, P., Moreau, E., Chevallier, F. & O'Keeffe, U. Multiple-scattering microwave radiative transfer for data assimilation applications. Q. J. R. Meteorol. Soc. 132, 1259–1281 (2006)

    ADS  Article  Google Scholar 

  43. Buehner, M. Ensemble-derived stationary and flow-dependent background-error covariances: evaluation in a quasi-operational NWP setting. Q. J. R. Meteorol. Soc. 131, 1013–1043 (2006)

    ADS  Article  Google Scholar 

  44. Chapnik, B., Desroziers, G., Rabier, F. & Talagrand, O. Diagnosis and tuning of observational error in a quasi-operational data assimilation setting. Q. J. R. Meteorol. Soc. 132, 543–565 (2006)

    ADS  Article  Google Scholar 

  45. Janisková, M. & Lopez, P. in Data Assimilation for Atmospheric, Oceanic and Hydrological Applications (eds Park, S. K. & Xu, L. ) 251–286 (Springer, 2013)

    Google Scholar 

  46. Trenberth, K. E. & Fasullo, J. T. Climate extremes and climate change: the Russian heat wave and other climate extremes of 2010. J. Geophys. Res. 117, D17103 (2012)

    ADS  Article  Google Scholar 

  47. Hoskins, B. The potential for skill across the range of the seamless weather-climate prediction problem: a stimulus for our science. Q. J. R. Meteorol. Soc. 139, 573–584 (2013)

    ADS  Article  Google Scholar 

  48. Jung, T., Miller, M. J. & Palmer, T. N. Diagnosing the origin of extended-range forecast errors. Mon. Weath. Rev. 138, 2434–2446 (2010)

    ADS  Article  Google Scholar 

  49. Duc, L., Saito, K. & Seko, H. Spatial-temporal fractions verification for high-resolution ensemble forecasts. Tellus A 65, 18171 (2013)

    ADS  Article  Google Scholar 

  50. Rodwell, M. J., Richardson, D. S., Hewson, T. D. & Haiden, T. A new equitable score suitable for verifying precipitation in numerical weather prediction. Q. J. R. Meteorol. Soc. 136, 1344–1363 (2010)

    Google Scholar 

  51. Johnson, C., Bowler, N. & l On the reliability and calibration of ensemble forecasts. Mon. Weath. Rev. 137, 1717–1720 (2009)

    ADS  Article  Google Scholar 

  52. Martin, G. M. et al. Analysis and reduction of systematic errors through a seamless approach to modeling weather and climate. J. Clim. 23, 5933–5957 (2010)

    ADS  Article  Google Scholar 

  53. Rodwell, M. J. & Palmer, T. N. Using numerical weather prediction to assess climate models. Q. J. R. Meteorol. Soc. 133, 129–146 (2007)

    ADS  Article  Google Scholar 

  54. Dole, R. et al. The making of an extreme event: putting the pieces together. Bull. Am. Meteorol. Soc. 95, 427–440 (2014)

    ADS  Article  Google Scholar 

  55. Ferro, C. A. T. & Stephenson, D. B. Extremal Dependence Indices: improved verification measures for deterministic forecasts of rare binary events. Weather Forecast. 26, 699–713 (2011)

    ADS  Article  Google Scholar 

  56. Yu, H., Chen, P., Li, Q. & Tang, B. Current capability of operational numerical models in predicting tropical cyclone intensity in the western North Pacific. Weather Forecast. 38, 353–367 (2013)

    ADS  Article  Google Scholar 

  57. Molteni, F., Kucharski, F. & Corti, S. in Predictability of Weather and Climate (eds Palmer, T. & Hagedorn, R. ) 365–390 (Cambridge Univ. Press, 2006)

    Book  Google Scholar 

  58. Lin, H., Brunet, G. & Derome, J. An observed connection between the North Atlantic Oscillation and the Madden-Julian Oscillation. J. Clim. 22, 364–380 (2009)

    ADS  Article  Google Scholar 

  59. Barnston, A. G., Tippett, M. K., L'Heureux, M. L., Li, S. & DeWitt, D. G. Skill of Real-time seasonal ENSO model predictions during 2002–11: is our capability increasing? Bull. Am. Meteorol. Soc. 93, 631–651 (2012)

    ADS  Article  Google Scholar 

  60. Baldwin, M. P. & Dunkerton, T. J. Stratospheric harbingers of anomalous weather regimes. Science 244, 581–584 (2001)

    ADS  Article  Google Scholar 

  61. Scaife, A. A., Knight, J. R., Vallis, G. K. & Folland, C. K. A stratospheric influence on the winter NAO and North Atlantic surface climate. Geophys. Res. Lett. 32, L18715 (2005)

    ADS  Article  Google Scholar 

  62. Teng, H., Branstator, G. W., Wang, H., Meehl, G. A. & Washington, W. M. Probability of US heat waves affected by a subseasonal planetary wave pattern. Nature Geosci. 6, 1056–1061 (2013)

    ADS  CAS  Article  Google Scholar 

  63. Frank, W. M. & Roundy, P. E. The relationship between tropical waves and tropical cyclogenesis. Mon. Weath. Rev. 134, 2397–2417 (2006)

    ADS  Article  Google Scholar 

  64. Inness, P. M., Slingo, J. M., Woolnough, S. J., Neale, R. B. & Pope, V. D. Organisation of tropical convection in a GCM with varying vertical resolution; implications of the Madden Julian Oscillation. Clim. Dyn. 17, 777–793 (2001)

    Article  Google Scholar 

  65. Koster, R. D. et al. Contribution of land surface initialization to subseasonal forecast skill: first results from the GLACE-2 project. Geophys. Res. Lett. 37, L02402 (2010)

    ADS  Article  Google Scholar 

  66. Lin, H. & Brunet, G. The influence of the Madden–Julian oscillation on Canadian wintertime surface air temperature. Mon. Weath. Rev. 137, 2250–2262 (2009)

    ADS  Article  Google Scholar 

  67. Benoit, R. et al. Toward the use of coupled atmospheric and hydrologic models at regional scale. Mon. Weath. Rev. 128, 1681–1706 (2000)

    ADS  Article  Google Scholar 

  68. Zappa, M. et al. Propagation of uncertainty from observing systems and NWP into hydrological models: COST-731 Working Group 2. Atmos. Sci. Lett. 11, 83–91 (2010)

    ADS  Article  Google Scholar 

  69. Lauritzen, P. H. & Thuburn, J. Evaluating advection/transport schemes using interrelated tracers, scatter plots and numerical mixing diagnostics. Q. J. R. Meteorol. Soc. 138, 906–918 (2011)

    ADS  Article  Google Scholar 

  70. Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C. & Baklanov, A. Real-time air quality forecasting, part II: State of the science, current research needs, and future prospects. Atmos. Environ. 60, 656–676 (2012)

    ADS  CAS  Article  Google Scholar 

  71. Cloke, H. et al. Preface, hydrological ensemble prediction systems. Hydrol. Processes 27, 1–4 (2013)

    ADS  Article  Google Scholar 

  72. Thorpe, A. J., Bauer, P., Magnusson, L. & Richardson, D. An evaluation of recent performance of ECMWF’s forecasts. ECMWF Newsl. 137, 15–18. (2013)

    Google Scholar 

  73. Magnusson, L. & Källén, E. Factors influencing skill improvements in the ECMWF forecasting system. Mon. Weath. Rev. 141, 3142–3153 (2013)

    ADS  Article  Google Scholar 

  74. Holloway, C. E., Woolnough, S. J. & Lister, G. M. S. The effects of explicit versus parameterized convection on the MJO in a large-domain high-resolution tropical case study. Part I: Characterization of large-scale organization and propagation. J. Atmos. Sci. 70, 1342–1369 (2013)

    ADS  Article  Google Scholar 

  75. Hong, S. Y. J. D. Next-generation numerical weather prediction: bridging parameterization, explicit clouds, and large eddies. Bull. Am. Meteorol. Soc. 93, ES6–ES9 (2012)

    Article  Google Scholar 

  76. Jakob, C. Accelerating progress in global atmospheric model development through improved parameterizations: challenges, opportunities, and strategies. Bull. Am. Meteorol. Soc. 91, 869–875 (2010)

    ADS  Article  Google Scholar 

  77. Phillips, T. J. et al. Evaluating parameterizations in general circulation models: Climate simulation meets weather prediction. Bull. Am. Meteorol. Soc. 85, 1903–1915 (2004)

    ADS  Article  Google Scholar 

  78. Shin, H. H. & Hong, S.-Y. Analysis of resolved and parameterized vertical transports in convective boundary layers at gray-zone resolutions. J. Atmos. Sci. 70, 3248–3261 (2013)

    ADS  Article  Google Scholar 

  79. Watson, P. A. G., Christensen, H. M. & Palmer, T. N. Does the ECMWF IFS convection parameterization with stochastic physics correctly reproduce relationships between convection and the large-scale state? J. Atmos. Sci. 72, 236–242 (2015)

    ADS  Article  Google Scholar 

  80. Randall, D., Khairoutdinov, M., Arakawa, A. & Grabowski, W. Breaking the cloud parameterization deadlock. Bull. Am. Meteorol. Soc. 84, 1547–1564 (2003)

    ADS  Article  Google Scholar 

  81. MacLachlan, C. et al. Global Seasonal forecast system version 5 (GloSea5): a high-resolution seasonal forecast system. Q. J. R. Meteorol. Soc. http://dx.doi.org/10.1002/qj.2396. (2014)

  82. Molteni, F. et al. The new ECMWF seasonal forecast system (system 4); ECMWF Technical Memoranda no. 656 (ECMWF, Reading, 2011)

    Google Scholar 

  83. Gleckler, P. J. Surface energy balance errors in AGCMs: implications for ocean-atmosphere model coupling. Geophys. Res. Lett. 32, L15708 (2005)

    ADS  Article  Google Scholar 

  84. Cardinali, C. in Data Assimilation for Atmospheric, Oceanic and Hydrologic Applications Vol. II (eds Park, S. K. & Xu, L. ) 89–110 (Springer, 2013)

    Google Scholar 

  85. Horanyi, A., Cardinali, C., Rennie, M. & Isaksen, L. The assimilation of horizontal line-of-sight wind information into the ECMWF data assimilation and forecasting system. Part I: The assessment of wind impact. Q. J. R. Meteorol. Soc. http://dx.doi.org/10.1002/qj.2430 (2014)

  86. Lorenc, A. C., Bowler, N. E., Clayton, A. M., Pring, S. R. & Fairbairn, D. Comparison of hybrid-4DEnVar and hybrid-4DVar data assimilation methods for global NWP. Mon. Weath. Rev. 143, 212–229 (2015)

    ADS  Article  Google Scholar 

  87. Evensen, G. Data Assimilation: The Ensemble Kalman Filter (Springer, 2007)

    MATH  Google Scholar 

  88. Leeuwen, P. J. V. Efficient non-linear data assimilation in geophysical fluid dynamics. Comput. Fluids http://dx.doi.org/doi:10.1016/j.compfluid.2010.11.011 (2011)

  89. Brunet, G. et al. Collaboration of the weather and climate communities to advance subseasonal-to-seasonal prediction. Bull. Am. Meteorol. Soc. 91, 1397–1406 (2010)

    ADS  Article  Google Scholar 

  90. Mollick, E. Establishing Moore's law. IEEE Ann. Hist. Comput. 28, 62–75 (2006)

    MathSciNet  Article  Google Scholar 

  91. Shalf, J., Dosanjh, S. & Morrison, J. in High Performance Computing for Computational Science – VECPAR 2010 (eds Palma, J. M. L. M. et al.) 1–25 (Springer, 2011)

    Book  Google Scholar 

  92. Müller, E. H. & Scheichl, R. Massively parallel solvers for elliptic partial differential equations in numerical weather. Q. J. R. Meteorol. Soc. 140, 2608–2624 (2014)

    ADS  Article  Google Scholar 

  93. Palem, K. Ten years of building broken chips: the physics and engineering of inexact computing. ACM Trans. Embed. Comput. Syst. (TECS) 12, 87:1–87:23(2013)

    Google Scholar 

  94. Lawrence, B. Data Handling on the Path to Exascale; http://old.ecmwf.int/newsevents/meetings/workshops/2014/Scalability/Presentations/pdfs/Lawrence.pdf (presented at ECMWF Scalability Workshop, Reading, 2013)

    Google Scholar 

  95. Collard, A. D., McNally, A. P., Hilton, F. I., Healy, S. B. & Atkinson, N. C. The use of principal component analysis for the assimilation of high-resolution infrared sounder observations for numerical weather prediction. Q. J. R. Meteorol. Soc. 136, 2038–2050 (2010)

    ADS  Article  Google Scholar 

  96. Snik, F. et al. Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters. Geophys. Res. Lett. 41, 7351–7358 (2014)

    ADS  Article  Google Scholar 

  97. Mahoney, W. P. III & O’Sullivan, J. M. Realizing the potential of vehicle-based observations. Bull. Am. Meteorol. Soc. 94, 1007–1018 (2013)

    ADS  Article  Google Scholar 

  98. Hurrell, J. et al. A unified modeling approach to climate system prediction. Bull. Am. Meteorol. Soc. 90, 1819–1832 (2009)

    ADS  Article  Google Scholar 

  99. World Meteorological Organization. Seamless Prediction of the Earth System: From Minutes to Months. WMO No. 1156 (World Meteorological Organization, Geneva, 2015)Status and outlook compiled from the most recent science conference of the WMO World Weather Research Programme.

  100. Simmons, A. J. & Hollingsworth, A. Some aspects of the improvement in skill of numerical weather prediction. Q. J. R. Meteorol. Soc. 128, 647–677 (2002) Discusses the historical increase of the weather predictive skill of one day lead-time per decade linked to improvements in data assimilation, models and observing systems.

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank C. Jakob and M. Miller for motivating us to write this paper. We are grateful to E. Källén, F. Rabier and A. Simmons for comments and to L. Magnusson for input and figures.

Author information

Authors and Affiliations

Authors

Contributions

P.B. led the writing of the paper and conceived the ideas of Figs 5 and 6. All authors contributed to writing the manuscript and assembled the remaining figures.

Corresponding author

Correspondence to Peter Bauer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Related audio

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015). https://doi.org/10.1038/nature14956

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14956

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing