Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum coherent optical phase modulation in an ultrafast transmission electron microscope


Coherent manipulation of quantum systems with light is expected to be a cornerstone of future information and communication technology, including quantum computation and cryptography1. The transfer of an optical phase onto a quantum wavefunction is a defining aspect of coherent interactions and forms the basis of quantum state preparation, synchronization and metrology. Light-phase-modulated electron states near atoms and molecules are essential for the techniques of attosecond science, including the generation of extreme-ultraviolet pulses and orbital tomography2,3. In contrast, the quantum-coherent phase-modulation of energetic free-electron beams has not been demonstrated, although it promises direct access to ultrafast imaging and spectroscopy with tailored electron pulses on the attosecond scale. Here we demonstrate the coherent quantum state manipulation of free-electron populations in an electron microscope beam. We employ the interaction of ultrashort electron pulses with optical near-fields4,5,6,7,8,9 to induce Rabi oscillations in the populations of electron momentum states, observed as a function of the optical driving field. Excellent agreement with the scaling of an equal-Rabi multilevel quantum ladder is obtained10, representing the observation of a light-driven ‘quantum walk’5 coherently reshaping electron density in momentum space11. We note that, after the interaction, the optically generated superposition of momentum states evolves into a train of attosecond electron pulses. Our results reveal the potential of quantum control for the precision structuring of electron densities, with possible applications ranging from ultrafast electron spectroscopy and microscopy to accelerator science and free-electron lasers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic and principles of coherent inelastic electron scattering by optical near-fields.
Figure 2: Quantum coherent manipulation of electron energy distributions.
Figure 3: Formation of an attosecond electron pulse train.


  1. 1

    Bouwmeester, D., Ekert, A. & Zeilinger, A. The Physics of Quantum Information (Springer, 2000)

    Google Scholar 

  2. 2

    Krausz, F. & Ivanov, M. Attosecond physics. Rev. Mod. Phys. 81, 163–234 (2009)

    ADS  Article  Google Scholar 

  3. 3

    Itatani, J. et al. Tomographic imaging of molecular orbitals. Nature 432, 867–871 (2004)

    ADS  CAS  Article  PubMed  Google Scholar 

  4. 4

    Barwick, B., Flannigan, D. J. & Zewail, A. H. Photon-induced near-field electron microscopy. Nature 462, 902–906 (2009)

    ADS  CAS  Article  PubMed  Google Scholar 

  5. 5

    García de Abajo, F. J., Asenjo-Garcia, A. & Kociak, M. Multiphoton absorption and emission by interaction of swift electrons with evanescent light fields. Nano Lett. 10, 1859–1863 (2010)

    ADS  Article  PubMed  Google Scholar 

  6. 6

    Park, S. T., Lin, M. & Zewail, A. H. Photon-induced near-field electron microscopy (PINEM): theoretical and experimental. New J. Phys. 12, 123028 (2010)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Kirchner, F. O., Gliserin, A., Krausz, F. & Baum, P. Laser streaking of free electrons at 25 keV. Nature Photon. 8, 52–57 (2013)

    ADS  Article  Google Scholar 

  8. 8

    Peralta, E. A. et al. Demonstration of electron acceleration in a laser-driven dielectric microstructure. Nature 503, 91–94 (2013)

    ADS  CAS  Article  PubMed  Google Scholar 

  9. 9

    Breuer, J. & Hommelhoff, P. Laser-based acceleration of nonrelativistic electrons at a dielectric structure. Phys. Rev. Lett. 111, 134803 (2013)

    ADS  Article  PubMed  Google Scholar 

  10. 10

    Shore, B. W. & Eberly, J. H. Analytic approximations in multi-level excitation theory. Opt. Commun. 24, 83–88 (1978)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Bouwmeester, D., Marzoli, I., Karman, G., Schleich, W. & Woerdman, J. Optical Galton board. Phys. Rev. A 61, 013410 (1999)

    ADS  Article  Google Scholar 

  12. 12

    García de Abajo, F. J. Optical excitations in electron microscopy. Rev. Mod. Phys. 82, 209–275 (2010)

    ADS  Article  Google Scholar 

  13. 13

    Hemsing, E., Stupakov, G., Xiang, D. & Zholents, A. Beam by design: laser manipulation of electrons in modern accelerators. Rev. Mod. Phys. 86, 897–941 (2014)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Krüger, M., Schenk, M. & Hommelhoff, P. Attosecond control of electrons emitted from a nanoscale metal tip. Nature 475, 78–81 (2011)

    Article  PubMed  Google Scholar 

  15. 15

    Herink, G., Solli, D. R., Gulde, M. & Ropers, C. Field-driven photoemission from nanostructures quenches the quiver motion. Nature 483, 190–193 (2012)

    ADS  CAS  Article  PubMed  Google Scholar 

  16. 16

    Wimmer, L. et al. Terahertz control of nanotip photoemission. Nature Phys. 10, 432–436 (2014)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Schiffrin, A. et al. Optical-field-induced current in dielectrics. Nature 493, 70–74 (2012)

    ADS  CAS  Article  PubMed  Google Scholar 

  18. 18

    Piglosiewicz, B. et al. Carrier-envelope phase effects on the strong-field photoemission of electrons from metallic nanostructures. Nature Photon. 8, 37–42 (2013)

    ADS  Article  Google Scholar 

  19. 19

    Stockman, M. I., Kling, M. F., Kleineberg, U. & Krausz, F. Attosecond nanoplasmonic-field microscope. Nature Photon. 1, 539–544 (2007)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Kapitza, P. L. & Dirac, P. M. The reflection of electrons from standing light waves. Math. Proc. Camb. Phil. Soc. 29, 297–300 (1933)

    ADS  Article  Google Scholar 

  21. 21

    Freimund, D. L., Aflatooni, K. & Batelaan, H. Observation of the Kapitza-Dirac effect. Nature 413, 142–143 (2001)

    ADS  CAS  Article  PubMed  Google Scholar 

  22. 22

    Smith, S. & Purcell, E. Visible light from localized surface charges moving across a grating. Phys. Rev. 92, 1069 (1953)

    ADS  Article  Google Scholar 

  23. 23

    Mizuno, K., Pae, J., Nozokido, T. & Furuya, K. Experimental evidence of the inverse Smith-Purcell effect. Nature 328, 45–47 (1987)

    ADS  Article  Google Scholar 

  24. 24

    Flannigan, D. J., Barwick, B. & Zewail, A. H. Biological imaging with 4D ultrafast electron microscopy. Proc. Natl Acad. Sci. USA 107, 9933–9937 (2010)

    ADS  CAS  Article  PubMed  Google Scholar 

  25. 25

    Yurtsever, A., van der Veen, R. M. & Zewail, A. H. Subparticle ultrafast spectrum imaging in 4D electron microscopy. Science 335, 59–64 (2012)

    ADS  CAS  Article  PubMed  Google Scholar 

  26. 26

    Ropers, C., Solli, D. R., Schulz, C. P., Lienau, C. & Elsaesser, T. Localized multiphoton emission of femtosecond electron pulses from metal nanotips. Phys. Rev. Lett. 98, 043907 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  27. 27

    Hommelhoff, P., Kealhofer, C. & Kasevich, M. A. Ultrafast electron pulses from a tungsten tip triggered by low-power femtosecond laser pulses. Phys. Rev. Lett. 97, 247402 (2006)

    ADS  Article  PubMed  Google Scholar 

  28. 28

    Gulde, M. et al. Ultrafast low-energy electron diffraction in transmission resolves polymer/graphene superstructure dynamics. Science 345, 200–204 (2014)

    ADS  CAS  Article  PubMed  Google Scholar 

  29. 29

    Moharam, M. G. & Young, L. Criterion for Bragg and Raman-Nath diffraction regimes. Appl. Opt. 17, 1757–1759 (1978)

    ADS  CAS  Article  PubMed  Google Scholar 

  30. 30

    Baum, P. & Zewail, A. H. Attosecond electron pulses for 4D diffraction and microscopy. Proc. Natl Acad. Sci. USA 104, 18409–18414 (2007)

    ADS  CAS  Article  PubMed  Google Scholar 

  31. 31

    Case, W. B., Tomandl, M., Deachapunya, S. & Arndt, M. Realization of optical carpets in the Talbot and Talbot-Lau configurations. Opt. Express 17, 20966–20974 (2009)

    ADS  CAS  Article  PubMed  Google Scholar 

  32. 32

    Harris, S. E. & Sokolov, A. V. Subfemtosecond pulse generation by molecular modulation. Phys. Rev. Lett. 81, 2894–2897 (1998)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995)

    Google Scholar 

  34. 34

    Park, S. T., Kwon, O.-H. & Zewail, A. H. Chirped imaging pulses in four-dimensional electron microscopy: femtosecond pulsed hole burning. New J. Phys. 14, 053046 (2012)

    ADS  Article  Google Scholar 

  35. 35

    Plemmons, D., Park, S. T., Zewail, A. H. & Flannigan, D. J. Characterization of fast photoelectron packets in weak and strong laser fields in ultrafast electron microscopy. Ultramicroscopy 146, 97–102 (2014)

    CAS  Article  PubMed  Google Scholar 

  36. 36

    Egerton, R. F. Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009)

    ADS  Article  Google Scholar 

  37. 37

    Schmidt, S. et al. Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. ACS Nano 6, 6040–6048 (2012)

    CAS  Article  PubMed  Google Scholar 

  38. 38

    Ibe, J. et al. On the electrochemical etching of tips for scanning tunneling microscopy. J. Vac. Sci. Technol. A 8, 3570–3575 (1990)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Asenjo-Garcia, A. & García de Abajo, F. J. Plasmon electron energy-gain spectroscopy. New J. Phys. 15, 103021 (2013)

    ADS  Article  Google Scholar 

  40. 40

    Park, S. T. & Zewail, A. H. Relativistic effects in photon-induced near field electron microscopy. J. Phys. Chem. A 116, 11128–11133 (2012)

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Schäfer, J., Lee, S.-C. & Kienle, A. Calculation of the near fields for the scattering of electromagnetic waves by multiple infinite cylinders at perpendicular incidence. J. Quant. Spectrosc. Radiat. Transf. 113, 2113–2123 (2012)

    ADS  Article  Google Scholar 

  42. 42

    Piazza, L. et al. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field. Nature Comm. 6, 6407 (2015)

    ADS  CAS  Article  Google Scholar 

Download references


We thank M. Sivis and B. Schröder for help with sample preparation. We also thank our colleagues within the Göttingen UTEM initiative (C. Jooß, M. Münzenberg, K. Samwer, M. Seibt, C.A. Volkert). This work was supported by the Deutsche Forschungsgemeinschaft (DFG-SFB 1073/project A05), the VolkswagenStiftung, and the Lower Saxony Ministry of Science and Culture. We thank JEOL Ltd and JEOL Germany for their continuing support during the development of the Göttingen Ultrafast Transmission Electron Microscope.

Author information




The experiments were carried out by A.F., with contributions from J.S. and S.S.; S.S. and C.R. conceived and directed the study; S.V.Y. developed the analytical description and K.E.E. carried out the numerical simulations, each with contributions from A.F., S.S. and C.R.; the manuscript was written by A.F., K.E.E., S.S. and C.R., after discussions with and input from all authors.

Corresponding authors

Correspondence to Sascha Schäfer or Claus Ropers.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Experimental setup.

Pulses from an amplified femtosecond (fs) laser system, at bottom left, are split into two optical beams. One of them is frequency-doubled in a β-barium borate (BBO) crystal and, after separation from the fundamental beam, focused (lens with numerical aperture 0.015, 50 cm focal length) onto the tungsten needle emitter (W tip) for the generation of electron probe pulses. The second beam (pump beam) is temporally stretched, attenuated and focused (lens with numerical aperture 0.014, 20 cm focal length) onto the sample within the TEM (angle of incidence, 55°). Relative timing between the electron probe and laser pump pulse is controlled by an optical delay stage. Optically-induced changes of the population of electron momentum states are recorded with an electron energy spectrometer. See Methods for details.

Extended Data Figure 2 Spatial characterization of near-field scattering.

a, Raster scan of the optically-induced electron energy gain and loss probability, characterized by the spectral cutoff (top panel) and the sideband populations of the zero loss peak (middle) and the second photon order (bottom). The field-dependent electron energy spectra shown in Fig. 2 of the main text were recorded at an x position indicated by the black line at the tip surface. A slow sample drift results in a scanning artefact in the y direction (jagged edge of the tip). For the results reported in the main text, a drift correction in the y direction was applied (see Methods section ‘Data analysis and drift correction’). b, TEM image of gold tip. Red rectangle, scanning area displayed in a. c, Electron energy-loss spectra recorded along x = 0 with varying distance from the tip surface.

Extended Data Figure 3 Pulse characterization by electron–photon cross-correlation.

a, Differential electron energy-loss spectra as function of time delay (zero loss peak of width 1.3 eV subtracted; the colour scale shows the relative change of spectral density). b, Relative total scattering amplitude as function of time delay (inset, relative shift of photon sidebands with respect to zero loss peak). c, Energy- and time-resolved structure of the electron pulse (the colour scale shows the normalized electron density).

Extended Data Figure 4 Evaluation of sideband populations.

Example of electron energy spectrum (black dots) showing a number of photon sidebands and a weak low-loss plasmon contribution. Lines show fitted function used to extract sideband populations (blue) and the plasmon band (orange).

Extended Data Figure 5 Influence of spatial and temporal averaging.

a, Effect of electron beam size (top) and laser pulse duration (bottom) on the visibility of the Rabi oscillations in the order |N| = 1. For increasing electron beam size and decreasing laser pulse duration, the modulations are strongly damped. The black curves correspond to the experimental situation. b, Occupation probabilities of multiple spectral sidebands. Solid lines, Nth-order Bessel functions. Dashed lines, numerical calculations accounting for temporal and spatial averaging in the experiments.

Extended Data Figure 6 Robustness of attosecond pulse train generation.

The influence of the electron beam’s initial energy spread and lateral size on the temporal peak width of the generated pulse train are shown in the upper and lower rows, respectively. ad, Evolution of the electron density as a function of propagation distance after the interaction with the optical near-field, incoherently averaged over the initial kinetic energy distribution (a, b) or the finite probing-area of the electron beam (c, d). A corresponding line profile at the propagation distance where the electron density peaks are at their maximum and form an attosecond pulse train is shown in e and f. For the experimental parameters used in this work (energy spread ΔE = 0.7 eV FWHM and electron beam radius r = 10 nm), the peak width remains nearly unchanged as compared to the ideal (not averaged) case.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Feist, A., Echternkamp, K., Schauss, J. et al. Quantum coherent optical phase modulation in an ultrafast transmission electron microscope. Nature 521, 200–203 (2015).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing