Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Feedback in low-mass galaxies in the early Universe

Abstract

The formation, evolution and death of massive stars release large quantities of energy and momentum into the gas surrounding the sites of star formation. This process, generically termed ‘feedback’, inhibits further star formation either by removing gas from the galaxy, or by heating it to temperatures that are too high to form new stars. Observations reveal feedback in the form of galactic-scale outflows of gas in galaxies with high rates of star formation, especially in the early Universe. Feedback in faint, low-mass galaxies probably facilitated the escape of ionizing radiation from galaxies when the Universe was about 500 million years old, so that the hydrogen between galaxies changed from neutral to ionized—the last major phase transition in the Universe.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The local starburst galaxy M82 observed with the Hubble Space Telescope.
Figure 2: The ratio of stellar to halo masses as a function of halo mass in the local Universe.
Figure 3: A moderately low-resolution rest-frame ultraviolet spectrum of a typical star-forming galaxy at redshift z ≈ 2–3.
Figure 4: Two schematic models of a spherical galactic outflow.
Figure 5: Low ionization interstellar absorption line profiles of the z = 2.73 gravitationally lensed galaxy MS1512-cB58.
Figure 6: The velocity offset of Lyα emission as a function of ultraviolet luminosity and velocity dispersion, for z ≈ 2–3 galaxies selected by strong Lyα emission.

References

  1. 1

    Burke, J. A. Mass flow from stellar systems—I. Radial flow from spherical systems. Mon. Not. R. Astron. Soc. 140, 241–254 (1968)

    Article  ADS  Google Scholar 

  2. 2

    Pettini, M. et al. The rest-frame optical spectra of Lyman break galaxies: star formation, extinction, abundances, and kinematics. Astrophys. J. 554, 981–1000 (2001)This paper is the first study of rest-frame optical emission lines at z ≈ 3 that indicated the ubiquity and importance of galactic outflows.

    Article  ADS  CAS  Google Scholar 

  3. 3

    Shapley, A. E., Steidel, C. C., Pettini, M. & Adelberger, K. L. Rest-frame ultraviolet spectra of z ≈ 3 Lyman break galaxies. Astrophys. J. 588, 65–89 (2003)This paper is a comprehensive study of the rest-frame ultraviolet spectra of star-forming galaxies at z ≈ 3, and demonstrates that the trends in the spectra arise from the properties of galactic outflows.

    Article  ADS  Google Scholar 

  4. 4

    Weiner, B. J. et al. Ubiquitous outflows in DEEP2 spectra of star-forming galaxies at z = 1.4. Astrophys. J. 692, 187–211 (2009)

    Article  ADS  CAS  Google Scholar 

  5. 5

    Steidel, C. C. et al. The structure and kinematics of the circumgalactic medium from far-ultraviolet spectra of z ≈ 2–3 galaxies. Astrophys. J. 717, 289–322 (2010)

    Article  ADS  CAS  Google Scholar 

  6. 6

    Jones, T., Stark, D. P. & Ellis, R. S. Keck spectroscopy of faint 3 < z < 7 Lyman break galaxies: III. The mean ultraviolet spectrum at z ≈ 4. Astrophys. J. 751, 51 (2012)

    Article  ADS  CAS  Google Scholar 

  7. 7

    Newman, S. F. et al. The SINS/zC-SINF survey of z = 2 galaxy kinematics: outflow properties. Astrophys. J. 761, 43 (2012)

    Article  ADS  CAS  Google Scholar 

  8. 8

    White, S. D. M. & Rees, M. J. Core condensation in heavy halos—a two-stage theory for galaxy formation and clustering. Mon. Not. R. Astron. Soc. 183, 341–358 (1978)

    Article  ADS  Google Scholar 

  9. 9

    Telesco, C. M., Joy, M., Dietz, K., Decher, R. & Campins, H. Infrared mapping of M82—a starburst in an edge-on barred galaxy. Astrophys. J. 369, 135–146 (1991)

    Article  ADS  CAS  Google Scholar 

  10. 10

    Yun, M. S., Ho, P. T. P. & Lo, K. Y. H. I streamers around M82—tidally disrupted outer gas disk. Astrophys. J. 411, L17–L20 (1993)

    Article  ADS  CAS  Google Scholar 

  11. 11

    Strickland, D. K. & Heckman, T. M. Supernova feedback efficiency and mass loading in the starburst and galactic superwind exemplar M82. Astrophys. J. 697, 2030–2056 (2009)

    Article  ADS  CAS  Google Scholar 

  12. 12

    Lehnert, M. D., Heckman, T. M. & Weaver, K. A. Very extended X-ray and Hα emission in M82: implications for the superwind phenomenon. Astrophys. J. 523, 575–584 (1999)

    Article  ADS  CAS  Google Scholar 

  13. 13

    Walter, F., Weiss, A. & Scoville, N. Molecular gas in M82: resolving the outflow and streamers. Astrophys. J. 580, L21–L25 (2002)

    Article  ADS  CAS  Google Scholar 

  14. 14

    Rupke, D. S., Veilleux, S. & Sanders, D. B. Outflows in infrared-luminous starbursts at z < 0.5. II. Analysis and discussion. Astrophys. J. (Suppl.) 160, 115–148 (2005)

    Article  ADS  CAS  Google Scholar 

  15. 15

    Madau, P. & Dickinson, M. Cosmic star-formation history. Annu. Rev. Astron. Astrophys. 52, 415–486 (2014)

    Article  ADS  Google Scholar 

  16. 16

    Tremonti, C. A. et al. The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the Sloan Digital Sky Survey. Astrophys. J. 613, 898–913 (2004)

    Article  ADS  CAS  Google Scholar 

  17. 17

    Erb, D. K. et al. The mass-metallicity relation at z ≥ 2. Astrophys. J. 644, 813–828 (2006)

    Article  ADS  CAS  Google Scholar 

  18. 18

    Maiolino, R. et al. AMAZE. I. The evolution of the mass-metallicity relation at z > 3. Astron. Astrophys. 488, 463–479 (2008)

    Article  ADS  Google Scholar 

  19. 19

    Dalcanton, J. J. The metallicity of galaxy disks: infall versus outflow. Astrophys. J. 658, 941–959 (2007)

    Article  ADS  Google Scholar 

  20. 20

    Erb, D. K. A model for star formation, gas flows, and chemical evolution in galaxies at high redshifts. Astrophys. J. 674, 151–156 (2008)

    Article  ADS  CAS  Google Scholar 

  21. 21

    Finlator, K. & Davé, R. The origin of the galaxy mass-metallicity relation and implications for galactic outflows. Mon. Not. R. Astron. Soc. 385, 2181–2204 (2008)

    Article  ADS  CAS  Google Scholar 

  22. 22

    Davé, R., Finlator, K. & Oppenheimer, B. D. An analytic model for the evolution of the stellar, gas and metal content of galaxies. Mon. Not. R. Astron. Soc. 421, 98–107 (2012)

    ADS  Google Scholar 

  23. 23

    Davé, R., Oppenheimer, B. D., Katz, N., Kollmeier, J. A. & Weinberg, D. H. The intergalactic medium over the last 10 billion years—I. Lyα absorption and physical conditions. Mon. Not. R. Astron. Soc. 408, 2051–2070 (2010)

    Article  ADS  CAS  Google Scholar 

  24. 24

    Prochaska, J. X., Weiner, B., Chen, H.-W., Mulchaey, J. & Cooksey, K. Probing the intergalactic medium/galaxy connection. V. On the origin of Lyα and O VI absorption at z < 0.2. Astrophys. J. 740, 91 (2011)

    Article  ADS  CAS  Google Scholar 

  25. 25

    Rudie, G. C. et al. The gaseous environment of high-z galaxies: precision measurements of neutral hydrogen in the circumgalactic medium of z ≈ 2–3 galaxies in the Keck Baryonic Structure Survey. Astrophys. J. 750, 67 (2012)

    Article  ADS  CAS  Google Scholar 

  26. 26

    Cowie, L. L., Songaila, A., Kim, T.-S. & Hu, E. M. The metallicity and internal structure of the Lyman-alpha forest clouds. Astron. J. 109, 1522–1530 (1995)

    Article  ADS  CAS  Google Scholar 

  27. 27

    Simcoe, R. A., Sargent, W. L. W., Rauch, M. & Becker, G. Observations of chemically enriched QSO absorbers near z ≈ 2.3 galaxies: galaxy formation feedback signatures in the intergalactic medium. Astrophys. J. 637, 648–668 (2006)

    Article  ADS  CAS  Google Scholar 

  28. 28

    Steidel, C. C., Dickinson, M. & Persson, S. E. Field galaxy evolution since Z approximately 1 from a sample of QSO absorption-selected galaxies. Astrophys. J. 437, L75–L78 (1994)

    Article  ADS  Google Scholar 

  29. 29

    Adelberger, K. L., Steidel, C. C., Shapley, A. E. & Pettini, M. Galaxies and intergalactic matter at redshift z ≈ 3: overview. Astrophys. J. 584, 45 (2003)

    Article  ADS  CAS  Google Scholar 

  30. 30

    Turner, M. L., Schaye, J., Steidel, C. C., Rudie, G. C. & Strom, A. L. Metal-line absorption around z ≈ 2.4 star-forming galaxies in the Keck Baryonic Structure Survey. Mon. Not. R. Astron. Soc. 445, 794–822 (2014)

    Article  ADS  CAS  Google Scholar 

  31. 31

    Werk, J. K. et al. The COS-Halos Survey: physical conditions and baryonic mass in the low-redshift circumgalactic medium. Astrophys. J. 792, 8 (2014)

    Article  ADS  CAS  Google Scholar 

  32. 32

    Simcoe, R. A. The carbon content of intergalactic gas at z = 4.25 and its evolution toward z = 2.4. Astrophys. J. 738, 159 (2011)

    Article  ADS  CAS  Google Scholar 

  33. 33

    Oppenheimer, B. D., Davé, R., Katz, N., Kollmeier, J. A. & Weinberg, D. H. The intergalactic medium over the last 10 billion years—II. Metal-line absorption and physical conditions. Mon. Not. R. Astron. Soc. 420, 829–859 (2012)

    Article  ADS  CAS  Google Scholar 

  34. 34

    Moster, B. P. et al. Constraints on the relationship between stellar mass and halo mass at low and high redshift. Astrophys. J. 710, 903–923 (2010)

    Article  ADS  CAS  Google Scholar 

  35. 35

    Behroozi, P. S., Conroy, C. & Wechsler, R. H. A comprehensive analysis of uncertainties affecting the stellar mass-halo mass relation for 0 < z < 4. Astrophys. J. 717, 379–403 (2010)

    Article  ADS  CAS  Google Scholar 

  36. 36

    Hopkins, P. F. et al. A unified, merger-driven model of the origin of starbursts, quasars, the cosmic X-ray background, supermassive black holes, and galaxy spheroids. Astrophys. J. (Suppl.) 163, 1–49 (2006)

    CAS  Google Scholar 

  37. 37

    Croton, D. J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006)

    Article  ADS  Google Scholar 

  38. 38

    Sell, P. H. et al. Massive compact galaxies with high-velocity outflows: morphological analysis and constraints on AGN activity. Mon. Not. R. Astron. Soc. 441, 3417–3443 (2014)

    Article  ADS  Google Scholar 

  39. 39

    Geach, J. E. et al. Stellar feedback as the origin of an extended molecular outflow in a starburst galaxy. Nature 516, 68–70 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  40. 40

    Chevalier, R. A. & Clegg, A. W. Wind from a starburst galaxy nucleus. Nature 317, 44–45 (1985)

    Article  ADS  Google Scholar 

  41. 41

    Veilleux, S., Cecil, G. & Bland-Hawthorn, J. Galactic winds. Annu. Rev. Astron. Astrophys. 43, 769–826 (2005)

    Article  ADS  Google Scholar 

  42. 42

    Murray, N., Quataert, E. & Thompson, T. A. On the maximum luminosity of galaxies and their central black holes: feedback from momentum-driven winds. Astrophys. J. 618, 569–585 (2005)

    Article  ADS  Google Scholar 

  43. 43

    Murray, N., Ménard, B. & Thompson, T. A. Radiation pressure from massive star clusters as a launching mechanism for super-galactic winds. Astrophys. J. 735, 66 (2011)

    Article  ADS  CAS  Google Scholar 

  44. 44

    Oppenheimer, B. D. & Davé, R. Cosmological simulations of intergalactic medium enrichment from galactic outflows. Mon. Not. R. Astron. Soc. 373, 1265–1292 (2006)

    Article  ADS  CAS  Google Scholar 

  45. 45

    Haas, M. R. et al. Physical properties of simulated galaxy populations at z = 2—I. Effect of metal-line cooling and feedback from star formation and AGN. Mon. Not. R. Astron. Soc. 435, 2931–2954 (2013)

    Article  ADS  Google Scholar 

  46. 46

    Kim, J.-h. et al. The AGORA high-resolution galaxy simulations comparison project. Astrophys. J. (Suppl.) 210, 14 (2014)

    Google Scholar 

  47. 47

    Hopkins, P. F., Quataert, E. & Murray, N. Stellar feedback in galaxies and the origin of galaxy-scale winds. Mon. Not. R. Astron. Soc. 421, 3522–3537 (2012)This paper presents numerical simulations of feedback based on models of the underlying physical processes.

    Article  ADS  CAS  Google Scholar 

  48. 48

    Booth, C. M. & Schaye, J. The interaction between feedback from active galactic nuclei and supernovae. Sci. Rep. 1738 (2013)

  49. 49

    Hopkins, P. F. et al. Galaxies on FIRE (Feedback In Realistic Environments): stellar feedback explains cosmologically inefficient star formation. Mon. Not. R. Astron. Soc. 445, 581–603 (2014)

    Article  ADS  CAS  Google Scholar 

  50. 50

    Martin, C. L. Mapping large-scale gaseous outflows in ultraluminous galaxies with Keck II ESI spectra: variations in outflow velocity with galactic mass. Astrophys. J. 621, 227–245 (2005)A demonstration of the scaling of outflow properties with galaxy properties in local starbursts.

    Article  ADS  CAS  Google Scholar 

  51. 51

    Martin, C. L., Kobulnicky, H. A. & Heckman, T. M. The metal content of dwarf starburst winds: results from Chandra observations of NGC 1569. Astrophys. J. 574, 663–692 (2002)

    Article  ADS  CAS  Google Scholar 

  52. 52

    Strickland, D. K., Heckman, T. M., Colbert, E. J. M., Hoopes, C. G. & Weaver, K. A. A high spatial resolution X-ray and Hα study of hot gas in the halos of star-forming disk galaxies. II. Quantifying supernova feedback. Astrophys. J. 606, 829–852 (2004)

    Article  ADS  CAS  Google Scholar 

  53. 53

    Lehnert, M. D. & Heckman, T. M. Ionized gas in the halos of edge-on starburst galaxies: evidence for supernova-driven superwinds. Astrophys. J. 462, 651 (1996)

    Article  ADS  CAS  Google Scholar 

  54. 54

    Heckman, T. M., Lehnert, M. D., Strickland, D. K. & Armus, L. Absorption-line probes of gas and dust in galactic superwinds. Astrophys. J., (Suppl.), 129, 493–516 (2000)

    Article  ADS  CAS  Google Scholar 

  55. 55

    Bolatto, A. D. et al. Suppression of star formation in the galaxy NGC 253 by a starburst-driven molecular wind. Nature 499, 450–453 (2013)

    Article  ADS  CAS  PubMed  Google Scholar 

  56. 56

    Heckman, T. M. et al. Extreme feedback and the epoch of reionization: clues in the local Universe. Astrophys. J. 730, 5 (2011)This paper reports on feedback in extreme galaxies in the local Universe which may be analogous to galaxies at much higher redshifts.

    Article  ADS  CAS  Google Scholar 

  57. 57

    George, R. D. et al. Herschel reveals a molecular outflow in a z = 2.3 ULIRG. Mon. Not. R. Astron. Soc. 442, 1877–1883 (2014)

    Article  ADS  CAS  Google Scholar 

  58. 58

    Steidel, C. C. et al. Strong nebular line ratios in the spectra of z 2–3 star forming galaxies: first results from KBSS-MOSFIRE. Astrophys. J. 795, 165 (2014)

    Article  ADS  CAS  Google Scholar 

  59. 59

    Sanders, R. L. et al. The MOSDEF Survey: mass, metallicity, and star-formation rate at z 2.3. Astrophys. J. 799, 138 (2015)

    Article  ADS  CAS  Google Scholar 

  60. 60

    Wisnioski, E. et al. The KMOS3D Survey: design, first results, and the evolution of galaxy kinematics from 0.7 ≤ z ≤ 2.7. Astrophys. J. 799, 209 (2015)

    Article  ADS  Google Scholar 

  61. 61

    Pettini, M. et al. New observations of the interstellar medium in the Lyman break galaxy MS 1512-cB58. Astrophys. J. 569, 742–757 (2002)

    Article  ADS  CAS  Google Scholar 

  62. 62

    Quider, A. M., Pettini, M., Shapley, A. E. & Steidel, C. C. The ultraviolet spectrum of the gravitationally lensed galaxy ‘the Cosmic Horseshoe’: a close-up of a star-forming galaxy at z ≈ 2. Mon. Not. R. Astron. Soc. 398, 1263–1278 (2009)

    Article  ADS  Google Scholar 

  63. 63

    Dessauges-Zavadsky, M. et al. Rest-frame ultraviolet spectrum of the gravitationally lensed galaxy “the 8 o’clock arc”: stellar and interstellar medium properties. Astron. Astrophys. 510, A26 (2010)

    Article  CAS  Google Scholar 

  64. 64

    Quider, A. M., Shapley, A. E., Pettini, M., Steidel, C. C. & Stark, D. P. A study of interstellar gas and stars in the gravitationally lensed galaxy ‘the Cosmic Eye’ from rest-frame ultraviolet spectroscopy. Mon. Not. R. Astron. Soc. 402, 1467–1479 (2010)

    Article  ADS  CAS  Google Scholar 

  65. 65

    Reddy, N. A. & Steidel, C. C. A steep faint-end slope of the UV luminosity function at z ≈ 2–3: implications for the global stellar mass density and star formation in low-mass halos. Astrophys. J. 692, 778–803 (2009)This paper shows that faint galaxies at z ≈ 2–3 make a notable contribution to the global star-formation density.

    Article  ADS  CAS  Google Scholar 

  66. 66

    Oesch, P. A. et al. The evolution of the ultraviolet luminosity function from z ≈ 0.75 to z ≈ 2.5 using HST ERS WFC3/UVIS observations. Astrophys. J. 725, L150–L155 (2010)

    Article  ADS  CAS  Google Scholar 

  67. 67

    McLure, R. J. et al. A new multifield determination of the galaxy luminosity function at z = 7–9 incorporating the 2012 Hubble Ultra-Deep Field imaging. Mon. Not. R. Astron. Soc. 432, 2696–2716 (2013)

    Article  ADS  Google Scholar 

  68. 68

    Bouwens, R. J. et al. UV luminosity functions at redshifts z = 4 to z ≈ 10: 11000 galaxies from HST legacy fields. Astrophys. J. 803, 34 (2015)This paper shows that the faint-end slope of the luminosity function remains steep to the highest redshifts measured, indicating that faint galaxies are abundant.

    Article  ADS  Google Scholar 

  69. 69

    Alavi, A. et al. Ultra-faint ultraviolet galaxies at z 2 behind the lensing cluster A1689: the luminosity function, dust extinction, and star formation rate density. Astrophys. J. 780, 143 (2014)

    Article  ADS  CAS  Google Scholar 

  70. 70

    Atek, H. et al. New constraints on the faint end of the UV luminosity function at z 7–8 using the gravitational lensing of the Hubble frontier fields cluster A2744. Astrophys. J. 800, 18 (2015)

    Article  ADS  Google Scholar 

  71. 71

    Fan, X., Carilli, C. L. & Keating, B. Observational constraints on cosmic reionization. Annu. Rev. Astron. Astrophys. 44, 415–462 (2006)

    Article  ADS  Google Scholar 

  72. 72

    Hinshaw, G. et al. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys. J. (Suppl.) 208, 19 (2013)

    Article  Google Scholar 

  73. 73

    Planck Collaboration et al. Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014)

  74. 74

    Wyithe, J. S. B. & Cen, R. The extended star formation history of the first generation of stars and the reionization of cosmic hydrogen. Astrophys. J. 659, 890–907 (2007)

    Article  ADS  Google Scholar 

  75. 75

    Kuhlen, M. & Faucher-Giguère, C.-A. Concordance models of reionization: implications for faint galaxies and escape fraction evolution. Mon. Not. R. Astron. Soc. 423, 862–876 (2012)

    Article  ADS  CAS  Google Scholar 

  76. 76

    Robertson, B. E. et al. New constraints on cosmic reionization from the 2012 Hubble ultra deep field campaign. Astrophys. J. 768, 71 (2013)This paper discusses the need for faint galaxies in accomplishing reionization.

    Article  ADS  CAS  Google Scholar 

  77. 77

    Nestor, D. B., Shapley, A. E., Steidel, C. C. & Siana, B. Narrowband imaging of escaping Lyman-continuum emission in the SSA22 field. Astrophys. J. 736, 18 (2011)

    Article  ADS  CAS  Google Scholar 

  78. 78

    Nestor, D. B., Shapley, A. E., Kornei, K. A., Steidel, C. C. & Siana, B. A refined estimate of the ionizing emissivity from galaxies at z 3: spectroscopic follow-up in the SSA22a field. Astrophys. J. 765, 47 (2013)

    Article  ADS  CAS  Google Scholar 

  79. 79

    Mostardi, R. E. et al. Narrowband Lyman-continuum imaging of galaxies at z 2.85. Astrophys. J. 779, 65 (2013)

    Article  ADS  CAS  Google Scholar 

  80. 80

    Erb, D. K. et al. Physical conditions in a young, unreddened, low-metallicity galaxy at high redshift. Astrophys. J. 719, 1168–1190 (2010)This paper describes the spectral properties and physical conditions of a low-mass, low-metallicity galaxy at high redshift.

    Article  ADS  CAS  Google Scholar 

  81. 81

    Stark, D. P. et al. Ultraviolet emission lines in young low-mass galaxies at z ≈ 2: physical properties and implications for studies at z > 7. Mon. Not. R. Astron. Soc. 445, 3200–3220 (2014)

    Article  ADS  CAS  Google Scholar 

  82. 82

    Borthakur, S., Heckman, T. M., Leitherer, C. & Overzier, R. A. A local clue to the reionization of the universe. Science 346, 216–219 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  83. 83

    Hu, E. M. & McMahon, R. G. Detection of Lyman-α-emitting galaxies at redshift 4.55. Nature 382, 231–233 (1996)

    Article  ADS  CAS  Google Scholar 

  84. 84

    Gawiser, E. et al. The physical nature of Lyα-emitting galaxies at z = 3.1. Astrophys. J. 642, L13–L16 (2006)

    Article  ADS  CAS  Google Scholar 

  85. 85

    Guaita, L. et al. Lyα-emitting galaxies at z = 2.1: stellar masses, dust, and star formation histories from spectral energy distribution fitting. Astrophys. J. 733, 114 (2011)

    Article  ADS  CAS  Google Scholar 

  86. 86

    McLinden, E. M. et al. Galactic winds and stellar populations in Lyman α emitting galaxies at z ≈ 3.1. Mon. Not. R. Astron. Soc. 439, 446–473 (2014)

    Article  ADS  CAS  Google Scholar 

  87. 87

    Vargas, C. J. et al. To stack or not to stack: spectral energy distribution properties of Lyα-emitting galaxies at z = 2.1. Astrophys. J. 783, 26 (2014)

    Article  ADS  CAS  Google Scholar 

  88. 88

    Chonis, T. S. et al. The spectrally resolved Lyα emission of three Lyα-selected field galaxies at z ≈ 2.4 from the HETDEX pilot survey. Astrophys. J. 775, 99 (2013)

    Article  ADS  CAS  Google Scholar 

  89. 89

    Hashimoto, T. et al. Gas motion study of Lyα emitters at z ≈ 2 using FUV and optical spectral lines. Astrophys. J. 765, 70 (2013)

    Article  ADS  CAS  Google Scholar 

  90. 90

    Guaita, L. et al. Magellan/MMIRS near-infrared multi-object spectroscopy of nebular emission from star-forming galaxies at 2 < z < 3. Astron. Astrophys. 551, A93 (2013)

    Article  CAS  Google Scholar 

  91. 91

    Rhoads, J. E. et al. The dynamical masses, densities, and star formation scaling relations of Lyα galaxies. Astrophys. J. 780, 20 (2014)

    Article  ADS  CAS  Google Scholar 

  92. 92

    Song, M. et al. The HETDEX pilot survey. V. The physical origin of Lyα emitters probed by near-infrared spectroscopy. Astrophys. J. 791, 3 (2014)

    Article  ADS  CAS  Google Scholar 

  93. 93

    Shibuya, T. et al. What is thE PHYSICAL ORIGIN OF Strong Lyα emission? II. Gas kinematics and distribution of Lyα emitters. Astrophys. J. 788, 74 (2014)

    Article  ADS  CAS  Google Scholar 

  94. 94

    Erb, D. K. et al. The Lyα properties of faint galaxies at z 2–3 with systemic redshifts and velocity dispersions from Keck-MOSFIRE. Astrophys. J. 795, 33 (2014)

    Article  ADS  CAS  Google Scholar 

  95. 95

    Verhamme, A., Schaerer, D. & Maselli, A. 3D Lyα radiation transfer. I. Understanding Lyα line profile morphologies. Astron. Astrophys. 460, 397–413 (2006)

    Article  ADS  CAS  Google Scholar 

  96. 96

    Verhamme, A., Schaerer, D., Atek, H. & Tapken, C. 3D Lyα radiation transfer. III. Constraints on gas and stellar properties of z ≈ 3 Lyman break galaxies (LBG) and implications for high-z LBGs and Lyα emitters. Astron. Astrophys. 491, 89–111 (2008)

    Article  ADS  CAS  Google Scholar 

  97. 97

    Laursen, P., Sommer-Larsen, J. & Andersen, A. C. Lyα radiative transfer with dust: escape fractions from simulated high-redshift galaxies. Astrophys. J. 704, 1640–1656 (2009)

    Article  ADS  CAS  Google Scholar 

  98. 98

    Verhamme, A. et al. Lyman-α emission properties of simulated galaxies: interstellar medium structure and inclination effects. Astron. Astrophys. 546, A111 (2012)

    Article  CAS  Google Scholar 

  99. 99

    Kulas, K. R. et al. The kinematics of multiple-peaked Lyα emission in star-forming galaxies at z 2–3. Astrophys. J. 745, 33 (2012)

    Article  ADS  CAS  Google Scholar 

  100. 100

    Law, D. R. et al. A HST/WFC3-IR morphological survey of galaxies at z = 1.5–3.6. II. The relation between morphology and gas-phase kinematics. Astrophys. J. 759, 29 (2012)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

I thank M. Pettini for comments, suggestions, and assistance with figures, and C. Steidel, M. Pettini, A. Shapley, N. Reddy and C. Martin for many discussions and collaborations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dawn K. Erb.

Ethics declarations

Competing interests

The author declares no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Erb, D. Feedback in low-mass galaxies in the early Universe. Nature 523, 169–176 (2015). https://doi.org/10.1038/nature14454

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing