Evolution of vertebrates as viewed from the crest

Abstract

The origin of vertebrates was accompanied by the advent of a novel cell type: the neural crest. Emerging from the central nervous system, these cells migrate to diverse locations and differentiate into numerous derivatives. By coupling morphological and gene regulatory information from vertebrates and other chordates, we describe how addition of the neural-crest-specification program may have enabled cells at the neural plate border to acquire multipotency and migratory ability. Analysis of the topology of the neural crest gene regulatory network can serve as a useful template for understanding vertebrate evolution, including elaboration of neural crest derivatives.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Gene regulatory interactions controlling vertebrate neural crest formation and the tunicate a9.49 cell lineage.
Figure 2: Schematic cladogram of chordate features associated with neural crest cells or their derivatives.

References

  1. 1

    Gans, C. & Northcutt, R. G. Neural crest and the origin of vertebrates: a new head. Science 220, 268–273 (1983).

    CAS  Article  ADS  PubMed  Google Scholar 

  2. 2

    Northcutt, R. G. The new head hypothesis revisited. J. Exp. Zool. B Mol. Dev. Evol. 304, 274–297 (2005). This article discusses the new head hypothesis in light of more recent data.

    Article  Google Scholar 

  3. 3

    Gee, H. Before the Backbone: Views on the Origin of the Vertebrates (Chapman & Hall, 1996).

    Google Scholar 

  4. 4

    Le Douarin, N. & Kalcheim, C. The Neural Crest (Cambridge Univ. Press, 1999).

    Google Scholar 

  5. 5

    Patthey, C., Schlosser, G. & Shimeld, S. M. The evolutionary history of vertebrate cranial placodes — I: cell type evolution. Dev. Biol. 389, 82–97 (2014).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Schlosser, G., Patthey, C. & Shimeld, S. M. The evolutionary history of vertebrate cranial placodes — II. Evolution of ectodermal patterning. Dev. Biol. 389, 98–119 (2014).

    CAS  Article  PubMed  Google Scholar 

  7. 7

    Hall, B. K. The neural crest as a fourth germ layer and vertebrates as quadroblastic not triploblastic. Evol. Dev. 2, 3–5 (2000).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Sauka-Spengler, T. & Bronner-Fraser, M. Evolution of the neural crest viewed from a gene regulatory perspective. Genesis 46, 673–682 (2008).

    Article  PubMed  Google Scholar 

  9. 9

    Holland, N. D. & Chen, J. Origin and early evolution of the vertebrates: new insights from advances in molecular biology, anatomy, and palaeontology. Bioessays 23, 142–151 (2001).

    CAS  Article  PubMed  Google Scholar 

  10. 10

    Sauka-Spengler, T., Meulemans, D., Jones, M. & Bronner-Fraser, M. Ancient evolutionary origin of the neural crest gene regulatory network. Dev. Cell 13, 405–420 (2007). This work demonstrated that the lamprey has neural crest GRN components that are homologous to those in other vertebrates in both expression pattern and function, indicating that the neural crest GRN is largely shared throughout all vertebrates.

    CAS  Article  PubMed  Google Scholar 

  11. 11

    Bronner-Fraser, M. & Fraser, S. E. Cell lineage analysis reveals multipotency of some avian neural crest cells. Nature 335, 161–164 (1988).

    CAS  Article  ADS  PubMed  Google Scholar 

  12. 12

    Bronner-Fraser, M. & Fraser, S. Developmental potential of avian trunk neural crest cells in situ. Neuron 3, 755–766 (1989).

    CAS  Article  PubMed  Google Scholar 

  13. 13

    Frank, E. & Sanes, J. R. Lineage of neurons and glia in chick dorsal root ganglia: analysis in vivo with a recombinant retrovirus. Development 111, 895–908 (1991).

    CAS  PubMed  Google Scholar 

  14. 14

    Dupin, E., Calloni, G. W. & Le Douarin, N. M. The cephalic neural crest of amniote vertebrates is composed of a large majority of precursors endowed with neural, melanocytic, chondrogenic and osteogenic potentialities. Cell Cycle 9, 238–249 (2010).

    CAS  Article  PubMed  Google Scholar 

  15. 15

    Calloni, G. W., Le Douarin, N. M. & Dupin, E. High frequency of cephalic neural crest cells shows coexistence of neurogenic, melanogenic, and osteogenic differentiation capacities. Proc. Natl Acad. Sci. USA 106, 8947–8952 (2009).

    CAS  Article  ADS  PubMed  Google Scholar 

  16. 16

    Heimberg, A. M., Cowper- Sal-lari, R., Sémon, M., Donoghue, P. C. J. & Peterson, K. J. microRNAs reveal the interrelationships of hagfish, lampreys, and gnathostomes and the nature of the ancestral vertebrate. Proc. Natl Acad. Sci. USA 107, 19379–19383 (2010).

    CAS  Article  ADS  PubMed  Google Scholar 

  17. 17

    Donoghue, P. C. J. & Keating, J. N. Early vertebrate evolution. Palaeontology 57, 879–893 (2014).

    Article  Google Scholar 

  18. 18

    Oisi, Y., Ota, K. G., Kuraku, S., Fujimoto, S. & Kuratani, S. Craniofacial development of hagfishes and the evolution of vertebrates. Nature 493, 175–180 (2013).

    CAS  Article  ADS  PubMed  Google Scholar 

  19. 19

    Ota, K. G. & Kuratani, S. Cyclostome embryology and early evolutionary history of vertebrates. Integr. Comp. Biol. 47, 329–337 (2007).

    Article  PubMed  Google Scholar 

  20. 20

    Shimeld, S. M. & Donoghue, P. C. J. Evolutionary crossroads in developmental biology: cyclostomes (lamprey and hagfish). Development 139, 2091–2099 (2012).

    CAS  Article  PubMed  Google Scholar 

  21. 21

    Hall, B. K. & Gillis, J. A. Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues. J. Anat. 222, 19–31 (2013).

    CAS  Article  PubMed  Google Scholar 

  22. 22

    Mongera, A. et al. Genetic lineage labeling in zebrafish uncovers novel neural crest contributions to the head, including gill pillar cells. Development 140, 916–925 (2013). This paper identifies gill pillar cells, which are crucial for gill structure throughout vertebrates, as neural crest derivatives.

    CAS  Article  PubMed  Google Scholar 

  23. 23

    Häming, D. et al. Expression of sympathetic nervous system genes in lamprey suggests their recruitment for specification of a new vertebrate feature. PLoS ONE 6, e26543 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Medeiros, D. M. The evolution of the neural crest: new perspectives from lamprey and invertebrate neural crest-like cells. Wiley Interdiscip. Rev. Dev. Biol. 2, 1–15 (2013).

    CAS  Google Scholar 

  25. 25

    Meulemans, D. & Bronner-Fraser, M. Central role of gene cooption in neural crest evolution. J. Exp. Zool. B. Mol. Dev. Evol. 304, 298–303 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. 26

    Jandzik, D. et al. Evolution of the new vertebrate head by co-option of an ancient chordate skeletal tissue. Nature 518, 534–537 (2015). This crucial paper identifies cellular cartilage in a cephalochordate, lending support to the contention that neural-crest-derived cartilage was co-opted from other tissues rather than constructed de novo.

    CAS  Article  ADS  PubMed  Google Scholar 

  27. 27

    Davidson, E. H. The Regulatory Genome (Academic, 2010).

    Google Scholar 

  28. 28

    Erwin, D. H. & Davidson, E. H. The evolution of hierarchical gene regulatory networks. Nature Rev. Genet. 10, 141–148 (2009).

    CAS  Article  PubMed  Google Scholar 

  29. 29

    de Crozé, N., Maczkowiak, F. & Monsoro-Burq, A. H. Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network. Proc. Natl Acad. Sci. USA 108, 155–160 (2011).

    Article  ADS  PubMed  Google Scholar 

  30. 30

    Nieto, M. A., Sargent, M. G., Wilkinson, D. G. & Cooke, J. Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 264, 835–839 (1994).

    CAS  Article  ADS  PubMed  Google Scholar 

  31. 31

    Labosky, P. A. & Kaestner, K. H. The winged helix transcription factor Hfh2 is expressed in neural crest and spinal cord during mouse development. Mech. Dev. 76, 185–190 (1998).

    CAS  Article  PubMed  Google Scholar 

  32. 32

    Dottori, M., Gross, M. K., Labosky, P. & Goulding, M. The winged-helix transcription factor Foxd3 suppresses interneuron differentiation and promotes neural crest cell fate. Development 128, 4127–4138 (2001).

    CAS  PubMed  Google Scholar 

  33. 33

    Simões-Costa, M. S., McKeown, S. J., Tan-Cabugao, J., Sauka-Spengler, T. & Bronner, M. E. Dynamic and differential regulation of stem cell factor FoxD3 in the neural crest is encrypted in the genome. PLoS Genet. 8, e1003142 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Betancur, P., Bronner-Fraser, M. & Sauka-Spengler, T. Genomic code for Sox10 activation reveals a key regulatory enhancer for cranial neural crest. Proc. Natl Acad. Sci. USA 107, 3570–3575 (2010).

    CAS  Article  ADS  PubMed  Google Scholar 

  35. 35

    McKeown, S. J., Lee, V. M., Bronner-Fraser, M., Newgreen, D. F. & Farlie, P. G. Sox10 overexpression induces neural crest-like cells from all dorsoventral levels of the neural tube but inhibits differentiation. Dev. Dyn. 233, 430–444 (2005).

    Article  PubMed  Google Scholar 

  36. 36

    Meulemans, D. & Bronner-Fraser, M. Gene-regulatory interactions in neural crest evolution and development. Dev. Cell 7, 291–299 (2004).

    CAS  Article  PubMed  Google Scholar 

  37. 37

    Betancur, P., Bronner-Fraser, M. & Sauka-Spengler, T. Assembling neural crest regulatory circuits into a gene regulatory network. Annu. Rev. Cell Dev. Biol. 26, 581–603 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. 38

    Simões-Costa, M. & Bronner, M. E. Establishing neural crest identity: a gene regulatory recipe. Development 142, 242–257 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Sauka-Spengler, T. & Bronner-Fraser, M. A gene regulatory network orchestrates neural crest formation. Nature Rev. Mol. Cell Biol. 9, 557–568 (2008).

    CAS  Article  Google Scholar 

  40. 40

    Simões-Costa, M. & Bronner, M. E. Insights into neural crest development and evolution from genomic analysis. Genome Res. 23, 1069–1080 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Donoghue, P. C. J., Graham, A. & Kelsh, R. N. The origin and evolution of the neural crest. Bioessays 30, 530–541 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42

    Meulemans, D. & Bronner-Fraser, M. Amphioxus and lamprey AP-2 genes: implications for neural crest evolution and migration patterns. Development 129, 4953–4962 (2002).

    CAS  PubMed  Google Scholar 

  43. 43

    Ota, K. G., Kuraku, S. & Kuratani, S. Hagfish embryology with reference to the evolution of the neural crest. Nature 446, 672–675 (2007).

    CAS  Article  ADS  PubMed  Google Scholar 

  44. 44

    Aybar, M. J., Nieto, M. A. & Mayor, R. Snail precedes Slug in the genetic cascade required for the specification and migration of the Xenopus neural crest. Development 130, 483–494 (2003).

    CAS  Article  PubMed  Google Scholar 

  45. 45

    LaBonne, C. & Bronner-Fraser, M. Snail-related transcriptional repressors are required in Xenopus for both the induction of the neural crest and its subsequent migration. Dev. Biol. 221, 195–205 (2000).

    CAS  Article  PubMed  Google Scholar 

  46. 46

    Oram, K. F. & Gridley, T. Mutations in Snail family genes enhance craniosynostosis of Twist1 haplo-insufficient mice: implications for Saethre-Chotzen Syndrome. Genetics 170, 971–974 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47

    Rogers, C. D., Saxena, A. & Bronner, M. E. Sip1 mediates an E-cadherin-to-N-cadherin switch during cranial neural crest EMT. J. Cell Biol. 203, 835–847 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48

    Jeffery, W. R. et al. Trunk lateral cells are neural crest-like cells in the ascidian Ciona intestinalis: insights into the ancestry and evolution of the neural crest. Dev. Biol. 324, 152–160 (2008).

    CAS  Article  PubMed  Google Scholar 

  49. 49

    Abitua, P. B., Wagner, E., Navarrete, I. A. & Levine, M. Identification of a rudimentary neural crest in a non-vertebrate chordate. Nature 492, 104–107 (2012). This paper argues that a gene regulatory network acting in the C. intestinalis a9.49 cell lineage is homologous to the GRN of vertebrate neural crest, and suggests that co-option of mesenchymal migration controls might have facilitated expansion of neural crest derivatives in early vertebrates.

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Ivashkin, E. & Adameyko, I. Progenitors of the protochordate ocellus as an evolutionary origin of the neural crest. Evodevo 4, 12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  51. 51

    Yu, J.-K., Meulemans, D., McKeown, S. J. & Bronner-Fraser, M. Insights from the amphioxus genome on the origin of vertebrate neural crest. Genome Res. 18, 1127–1132 (2008). This paper showed that an AmphiFoxD regulatory element was capable of driving expression in chicken somites, but not in neural crest, suggesting that novel regulatory elements were required for AmphiFoxD incorporation into the neural crest GRN.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. 52

    Langeland, J. A., Tomsa, J. M., Jackman, W. R. & Kimmel, C. B. An amphioxus snail gene: expression in paraxial mesoderm and neural plate suggests a conserved role in patterning the chordate embryo. Dev. Genes Evol. 208, 569–577 (1998).

    CAS  Article  PubMed  Google Scholar 

  53. 53

    Denes, A. S. et al. Molecular architecture of annelid nerve cord supports common origin of nervous system centralization in bilateria. Cell 129, 277–288 (2007).

    CAS  Article  Google Scholar 

  54. 54

    Ohno, S. Evolution by Gene Duplication (Springer, 1970).

    Google Scholar 

  55. 55

    Yu, J.-K., Holland, N. D. & Holland, L. Z. An amphioxus winged helix/forkhead gene, AmphiFoxD: insights into vertebrate neural crest evolution. Dev. Dyn. 225, 289–297 (2002).

    CAS  Article  PubMed  Google Scholar 

  56. 56

    Yu, J.-K. S. The evolutionary origin of the vertebrate neural crest and its developmental gene regulatory network — insights from amphioxus. Zoology (Jena) 113, 1–9 (2010).

    Article  Google Scholar 

  57. 57

    Parker, H. J., Bronner, M. E. & Krumlauf, R. A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Nature 514, 490–493 (2014).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Dehal, P. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins. Science 298, 2157–2167 (2002).

    CAS  Article  ADS  Google Scholar 

  59. 59

    Holland, L. Z. et al. The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res. 18, 1100–1111 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. 60

    Yu, J.-K., Holland, N. D. & Holland, L. Z. Tissue-specific expression of FoxD reporter constructs in amphioxus embryos. Dev. Biol. 274, 452–461 (2004).

    CAS  Article  PubMed  Google Scholar 

  61. 61

    Peter, I. S. & Davidson, E. H. Evolution of gene regulatory networks controlling body plan development. Cell 144, 970–985 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62

    Ono, H., Kozmik, Z., Yu, J.-K. & Wada, H. A novel N-terminal motif is responsible for the evolution of neural crest-specific gene-regulatory activity in vertebrate FoxD3. Dev. Biol. 385, 396–404 (2014).

    CAS  Article  PubMed  Google Scholar 

  63. 63

    Taylor, J. S. & Raes, J. Duplication and divergence: the evolution of new genes and old ideas. Annu. Rev. Genet. 38, 615–643 (2004).

    CAS  Article  PubMed  Google Scholar 

  64. 64

    Vandepoele, K., De Vos, W., Taylor, J. S., Meyer, A. & Van de Peer, Y. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc. Natl Acad. Sci. USA 101, 1638–1643 (2004).

    CAS  Article  ADS  PubMed  Google Scholar 

  65. 65

    Crow, K. D., Wagner, G. P. & SMBE Tri-National Young Investigators. Proceedings of the SMBE Tri-National Young Investigators' Workshop 2005. What is the role of genome duplication in the evolution of complexity and diversity? Mol. Biol. Evol. 23, 887–892 (2006).

    CAS  Article  PubMed  Google Scholar 

  66. 66

    Holland, P. W., Garcia-Fernàndez, J., Williams, N. A. & Sidow, A. Gene duplications and the origins of vertebrate development. Dev. Suppl. 1994, 125–133 (1994).

    Google Scholar 

  67. 67

    Holland, L. Z. Evolution of new characters after whole genome duplications: insights from amphioxus. Semin. Cell Dev. Biol. 24, 101–109 (2013).

    CAS  Article  PubMed  Google Scholar 

  68. 68

    Smith, J. J. et al. Sequencing of the sea lamprey (Petromyzon marinus) genome provides insights into vertebrate evolution. Nature Genet. 45, 415–421 (2013).

    CAS  Article  PubMed  Google Scholar 

  69. 69

    Kuraku, S. Insights into cyclostome phylogenomics: pre-2R or post-2R. Zoolog. Sci. 25, 960–968 (2008).

    CAS  Article  PubMed  Google Scholar 

  70. 70

    Kuraku, S., Meyer, A. & Kuratani, S. Timing of genome duplications relative to the origin of the vertebrates: did cyclostomes diverge before or after? Mol. Biol. Evol. 26, 47–59 (2009).

    CAS  Article  PubMed  Google Scholar 

  71. 71

    Smith, J. J. The sea lamprey meiotic map resolves ancient vertebrate genome duplications. Preprint at http://dx.doi.org/10.1101/008953 (2014).

  72. 72

    Carroll, S. B. Evolution at two levels: on genes and form. PLoS Biol. 3, e245 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. 73

    Kassahn, K. S., Dang, V. T., Wilkins, S. J., Perkins, A. C. & Ragan, M. A. Evolution of gene function and regulatory control after whole-genome duplication: comparative analyses in vertebrates. Genome Res. 19, 1404–1418 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74

    Kim, Y. J. et al. Generation of multipotent induced neural crest by direct reprogramming of human postnatal fibroblasts with a single transcription factor. Cell Stem Cell 15, 497–506 (2014).

    CAS  Article  PubMed  Google Scholar 

  75. 75

    Emes, R. D. et al. Evolutionary expansion and anatomical specialization of synapse proteome complexity. Nature Neurosci. 11, 799–806 (2008).

    CAS  Article  PubMed  Google Scholar 

  76. 76

    Le Douarin, N. M. & Teillet, M. A. Experimental analysis of the migration and differentiation of neuroblasts of the autonomic nervous system and of neurectodermal mesenchymal derivatives, using a biological cell marking technique. Dev. Biol. 41, 162–184 (1974).

    CAS  Article  PubMed  Google Scholar 

  77. 77

    Le Lièvre, C. S., Schweizer, G. G., Ziller, C. M. & Le Douarin, N. M. Restrictions of developmental capabilities in neural crest cell derivatives as tested by in vivo transplantation experiments. Dev. Biol. 77, 362–378 (1980).

    Article  PubMed  Google Scholar 

  78. 78

    Le Lièvre, C. S. & Le Douarin, N. M. Mesenchymal derivatives of the neural crest: analysis of chimaeric quail and chick embryos. J. Embryol. Exp. Morphol. 34, 125–154 (1975).

    PubMed  Google Scholar 

  79. 79

    Sire, J.-Y., Donoghue, P. C. J. & Vickaryous, M. K. Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates. J. Anat. 214, 409–440 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  80. 80

    Smith, M., Hickman, A., Amanze, D., Lumsden, A. & Thorogood, P. Trunk neural crest origin of caudal fin mesenchyme in the zebrafish Brachydanio rerio. Proc. R. Soc. Lond. B 256, 137–145 (1994).

    Article  ADS  Google Scholar 

  81. 81

    Collazo, A., Bronner-Fraser, M. & Fraser, S. E. Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration. Development 118, 363–376 (1993).

    CAS  PubMed  Google Scholar 

  82. 82

    Coelho-Aguiar, J. M., Le Douarin, N. M. & Dupin, E. Environmental factors unveil dormant developmental capacities in multipotent progenitors of the trunk neural crest. Dev. Biol. 384, 13–25 (2013).

    CAS  Article  PubMed  Google Scholar 

  83. 83

    McGonnell, I. M. & Graham, A. Trunk neural crest has skeletogenic potential. Curr. Biol. 12, 767–771 (2002).

    CAS  Article  PubMed  Google Scholar 

  84. 84

    Lee, R. T. H., Knapik, E. W., Thiery, J. P. & Carney, T. J. An exclusively mesodermal origin of fin mesenchyme demonstrates that zebrafish trunk neural crest does not generate ectomesenchyme. Development 140, 2923–2932 (2013). This recent paper finds that neural crest cells at trunk levels do not contribute to fin mesenchyme, in contrast to earlier claims.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. 85

    Lee, R. T. H., Thiery, J. P. & Carney, T. J. Dermal fin rays and scales derive from mesoderm, not neural crest. Curr. Biol. 23, R336–R337 (2013).

    Article  CAS  PubMed  Google Scholar 

  86. 86

    Shimada, A. et al. Trunk exoskeleton in teleosts is mesodermal in origin. Nature Commun. 4, 1639 (2013). This paper suggests that mesoderm, and not neural crest, gives rise to the exoskeleton at trunk levels, conflicting with findings of earlier studies and calling into question whether trunk neural crest has ectomesenchymal capability.

    Article  ADS  CAS  Google Scholar 

  87. 87

    Mongera, A. & Nüsslein-Volhard, C. Scales of fish arise from mesoderm. Curr. Biol. 23, R338–R339 (2013).

    CAS  Article  PubMed  Google Scholar 

  88. 88

    Théveneau, E., Duband, J.-L. & Altabef, M. Ets-1 confers cranial features on neural crest delamination. PLoS ONE 2, e1142 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Martinsen, B. J. & Bronner-Fraser, M. Neural crest specification regulated by the helix-loop-helix repressor Id2. Science 281, 988–991 (1998).

    CAS  Article  ADS  PubMed  Google Scholar 

  90. 90

    Janvier, P. Early Vertebrates (Oxford Univ. Press, 1996).

    Google Scholar 

  91. 91

    Jinno, H. et al. Convergent genesis of an adult neural crest-like dermal stem cell from distinct developmental origins. Stem Cells 28, 2027–2040 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. 92

    Morrison, S. J., White, P. M., Zock, C. & Anderson, D. J. Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells. Cell 96, 737–749 (1999).

    CAS  Article  PubMed  Google Scholar 

  93. 93

    Dyachuk, V. et al. Neurodevelopment. Parasympathetic neurons originate from nerve-associated peripheral glial progenitors. Science 345, 82–87 (2014). One of two papers demonstrating that Schwann-cell precursors also give rise to parasympathetic neurons.

    CAS  Article  ADS  PubMed  Google Scholar 

  94. 94

    Espinosa-Medina, I. et al. Neurodevelopment. Parasympathetic ganglia derive from Schwann cell precursors. Science 345, 87–90 (2014). The second of two papers demonstrating that Schwann-cell precursors are a source of parasympathetic neurons.

    CAS  Article  ADS  PubMed  Google Scholar 

  95. 95

    Adameyko, I. et al. Schwann cell precursors from nerve innervation are a cellular origin of melanocytes in skin. Cell 139, 366–379 (2009). This paper identifies Schwann-cell precursors as a major source of pigment cells in chicken and mouse.

    CAS  Article  PubMed  Google Scholar 

  96. 96

    Krause, M. P. et al. Direct genesis of functional rodent and human Schwann cells from skin mesenchymal precursors. Stem Cell Rep. 3, 85–100 (2014).

    CAS  Article  Google Scholar 

  97. 97

    Green, S. A. & Bronner, M. E. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits. Differentiation 87, 44–51 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. 98

    Northcutt, R. G. & Gans, C. The genesis of neural crest and epidermal placodes: a reinterpretation of vertebrate origins. Q. Rev. Biol. 58, 1–28 (1983).

    CAS  Article  PubMed  Google Scholar 

  99. 99

    Graham, A. Deconstructing the pharyngeal metamere. J. Exp. Zool. B Mol. Dev. Evol. 310, 336–344 (2008).

    Google Scholar 

  100. 100

    McCauley, D. W. & Bronner-Fraser, M. Neural crest contributions to the lamprey head. Development 130, 2317–2327 (2003).

    CAS  Article  PubMed  Google Scholar 

  101. 101

    Gillis, J. A., Fritzenwanker, J. H. & Lowe, C. J. A stem-deuterostome origin of the vertebrate pharyngeal transcriptional network. Proc. Biol. Sci. 279, 237–246 (2012).

    Article  PubMed  Google Scholar 

  102. 102

    Smith, A. B. The pre-radial history of echinoderms. Geolog. J. 40, 255–280 (2005).

    Article  Google Scholar 

  103. 103

    Graham, A. & Richardson, J. Developmental and evolutionary origins of the pharyngeal apparatus. Evodevo 3, 24 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  104. 104

    Yasui, K., Kaji, T., Morov, A. R. & Yonemura, S. Development of oral and branchial muscles in lancelet larvae of Branchiostoma japonicum. J. Morphol. 275, 465–477 (2014).

    Article  PubMed  Google Scholar 

  105. 105

    Trinajstic, K. et al. Fossil musculature of the most primitive jawed vertebrates. Science 341, 160–164 (2013).

    CAS  Article  ADS  PubMed  Google Scholar 

  106. 106

    Matsuoka, T. et al. Neural crest origins of the neck and shoulder. Nature 436, 347–355 (2005).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Köntges, G. & Lumsden, A. Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122, 3229–3242 (1996).

    PubMed  Google Scholar 

  108. 108

    Fraser, G. J., Cerny, R., Soukup, V., Bronner-Fraser, M. & Streelman, J. T. The odontode explosion: the origin of tooth-like structures in vertebrates. Bioessays 32, 808–817 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. 109

    Murdock, D. J. E. et al. The origin of conodonts and of vertebrate mineralized skeletons. Nature 502, 546–549 (2013).

    CAS  Article  ADS  PubMed  Google Scholar 

  110. 110

    Janvier, P. Inside-out turned upside-down. Nature 502, 457–458 (2013).

    CAS  Article  ADS  PubMed  Google Scholar 

  111. 111

    Creuzet, S. E., Martinez, S. & Le Douarin, N. M. The cephalic neural crest exerts a critical effect on forebrain and midbrain development. Proc. Natl Acad. Sci. USA 103, 14033–14038 (2006).

    CAS  Article  ADS  PubMed  Google Scholar 

  112. 112

    Le Douarin, N. M., Couly, G. & Creuzet, S. E. The neural crest is a powerful regulator of pre-otic brain development. Dev. Biol. 366, 74–82 (2012).

    CAS  Article  PubMed  Google Scholar 

  113. 113

    Aguiar, D. P., Sghari, S. & Creuzet, S. The facial neural crest controls fore- and midbrain patterning by regulating Foxg1 expression through Smad1 activity. Development 141, 2494–2505 (2014).

    CAS  Article  PubMed  Google Scholar 

  114. 114

    Holland, L. Z. et al. Evolution of bilaterian central nervous systems: a single origin? Evodevo 4, 27 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  115. 115

    Pani, A. M. et al. Ancient deuterostome origins of vertebrate brain signalling centres. Nature 483, 289–294 (2012).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Noden, D. M. & West, P. F. The differentiation and morphogenesis of craniofacial muscles. Dev. Dyn. 235, 1194–1218 (2006).

    CAS  Article  PubMed  Google Scholar 

  117. 117

    Sambasivan, R., Kuratani, S. & Tajbakhsh, S. An eye on the head: the development and evolution of craniofacial muscles. Development 138, 2401–2415 (2011).

    CAS  Article  PubMed  Google Scholar 

  118. 118

    Lee, G.-H., Chang, M.-Y., Hsu, C.-H. & Chen, Y.-H. Essential roles of basic helix-loop-helix transcription factors, Capsulin and Musculin, during craniofacial myogenesis of zebrafish. Cell. Mol. Life Sci. 68, 4065–4078 (2011).

    CAS  Article  PubMed  Google Scholar 

  119. 119

    Tzahor, E. Heart and craniofacial muscle development: a new developmental theme of distinct myogenic fields. Dev. Biol. 327, 273–279 (2009).

    CAS  Article  PubMed  Google Scholar 

  120. 120

    Kelly, R. G. Core issues in craniofacial myogenesis. Exp. Cell Res. 316, 3034–3041 (2010).

    CAS  Article  ADS  PubMed  Google Scholar 

  121. 121

    Johnels, A. G. On the peripheral autonomic nervous system of the trunk region of Lampetra planeri. Acta Zool. 37, 251–286 (1956).

    Article  Google Scholar 

  122. 122

    Donoghue, P. C. J. & Sansom, I. J. Origin and early evolution of vertebrate skeletonization. Microsc. Res. Tech. 59, 352–372 (2002).

    Article  PubMed  Google Scholar 

  123. 123

    Kague, E. et al. Skeletogenic fate of zebrafish cranial and trunk neural crest. PLoS ONE 7, e47394 (2012).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  124. 124

    Hirasawa, T., Nagashima, H. & Kuratani, S. The endoskeletal origin of the turtle carapace. Nature Commun. 4, 2107 (2013).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank H. Parker, C. Rogers and L. Kerosuo for their comments and helpful discussion on this manuscript. This work was supported by National Institutes of Health (NIH) grant R01NS086907. M.S.-C. was funded by a fellowship from the Pew Foundation and by NIH grant 1K99DE024232.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marianne E. Bronner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Green, S., Simoes-Costa, M. & Bronner, M. Evolution of vertebrates as viewed from the crest. Nature 520, 474–482 (2015). https://doi.org/10.1038/nature14436

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing