Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon

An Erratum to this article was published on 14 May 2015

Abstract

Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized1,2,3,4,5,6,7,8,9,10, but these states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. Non-Gaussian entangled states have been produced in small ensembles of ions11,12, and very recently in large atomic ensembles13,14,15. Here we generate entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function—an important hallmark of non-classicality—and verify an entanglement depth (the minimum number of mutually entangled atoms) of 2,910 ± 190 out of 3,100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. Although the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing. More generally, our results demonstrate the power of heralded methods for entanglement generation, and illustrate how the information contained in a single photon can drastically alter the quantum state of a large system.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Scheme for heralded entanglement generation in a large atomic ensemble by single-photon detection.
Figure 2: Collective-spin distribution of atomic state heralded by one photon.
Figure 3: Reconstruction of the heralded many-atom entangled state.

References

  1. Kitagawa, M. & Ueda, M. Squeezed spin states. Phys. Rev. A 47, 5138–5143 (1993)

    Article  ADS  CAS  Google Scholar 

  2. Appel, J. et al. Mesoscopic atomic entanglement for precision measurements beyond the standard quantum limit. Proc. Natl Acad. Sci. USA 106, 10960–10965 (2009)

    Article  ADS  CAS  Google Scholar 

  3. Takano, T., Tanaka, S.-I.-R., Namiki, R. & Takahashi, Y. Manipulation of nonclassical atomic spin states. Phys. Rev. Lett. 104, 013602 (2010)

    Article  ADS  Google Scholar 

  4. Schleier-Smith, M. H., Leroux, I. D. & Vuletić, V. States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010)

    Article  ADS  Google Scholar 

  5. Leroux, I. D., Schleier-Smith, M. H. & Vuletić, V. Implementation of cavity squeezing of a collective atomic spin. Phys. Rev. Lett. 104, 073602 (2010)

    Article  ADS  Google Scholar 

  6. Gross, C., Zibold, T., Nicklas, E., Estève, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010)

    Article  ADS  CAS  Google Scholar 

  7. Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010)

    Article  ADS  CAS  Google Scholar 

  8. Hamley, C. D., Gerving, C. S., Hoang, T. M., Bookjans, E. M. & Chapman, M. S. Spin-nematic squeezed vacuum in a quantum gas. Nature Phys. 8, 305–308 (2012)

    Article  ADS  CAS  Google Scholar 

  9. Sewell, R. J. et al. Magnetic sensitivity beyond the projection noise limit by spin squeezing. Phys. Rev. Lett. 109, 253605 (2012)

    Article  ADS  CAS  Google Scholar 

  10. Bohnet, J. G. et al. Reduced spin measurement back-action for a phase sensitivity ten times beyond the standard quantum limit. Nature Photon. 8, 731–736 (2014)

    Article  ADS  CAS  Google Scholar 

  11. Leibfried, D. et al. Creation of a six-atom ‘Schrödinger cat’ state. Nature 438, 639–642 (2005)

    Article  ADS  CAS  Google Scholar 

  12. Monz, T. et al. 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)

    Article  ADS  Google Scholar 

  13. Haas, F., Volz, J., Gehr, R., Reichel, J. & Estéve, J. Entangled states of more than 40 atoms in an optical fiber cavity. Science 344, 180–183 (2014)

    Article  ADS  CAS  Google Scholar 

  14. Strobel, H. et al. Fisher information and entanglement of non-Gaussian spin states. Science 345, 424–427 (2014)

    Article  ADS  CAS  Google Scholar 

  15. Lücke, B. et al. Detecting multiparticle entanglement of Dicke states. Phys. Rev. Lett. 112, 155304 (2014)

    Article  ADS  Google Scholar 

  16. Leibfried, D. et al. Experimental determination of the motional quantum state of a trapped atom. Phys. Rev. Lett. 77, 4281–4285 (1996)

    Article  ADS  CAS  Google Scholar 

  17. Lvovsky, A. I. et al. Quantum state reconstruction of the single-photon Fock state. Phys. Rev. Lett. 87, 050402 (2001)

    Article  ADS  CAS  Google Scholar 

  18. Vlastakis, B. et al. Deterministically encoding quantum information using 100-photon Schrödinger cat states. Science 342, 607–610 (2013)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  19. Sørensen, A. S. & Mølmer, K. Entanglement and extreme spin squeezing. Phys. Rev. Lett. 86, 4431–4434 (2001)

    Article  ADS  Google Scholar 

  20. McConnell, R. et al. Generating entangled spin states for quantum metrology by single-photon detection. Phys. Rev. A 88, 063802 (2013)

    Article  ADS  Google Scholar 

  21. Arecchi, F. T., Courtens, E., Gilmore, R. & Thomas, H. Atomic coherent states in quantum optics. Phys. Rev. A 6, 2211–2237 (1972)

    Article  ADS  CAS  Google Scholar 

  22. Dowling, J. P., Agarwal, G. S. & Schleich, W. P. Wigner distribution of a general angular-momentum state: applications to a collection of two-level atoms. Phys. Rev. A 49, 4101–4109 (1994)

    Article  ADS  CAS  Google Scholar 

  23. Agarwal, G. S., Lougovski, P. & Walther, H. Multiparticle entanglement and the Schrödinger cat state using ground-state coherences. J. Mod. Opt. 52, 1397–1404 (2005)

    Article  ADS  CAS  Google Scholar 

  24. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001)

    Article  ADS  CAS  Google Scholar 

  25. Matsukevich, D. N. et al. Deterministic single photons via conditional quantum evolution. Phys. Rev. Lett. 97, 013601 (2006)

    Article  ADS  CAS  Google Scholar 

  26. Kuzmich, A. et al. Generation of nonclassical photon pairs for scalable quantum communication with atomic ensembles. Nature 423, 731–734 (2003)

    Article  ADS  CAS  Google Scholar 

  27. Simon, J., Tanji, H., Thompson, J. K. & Vuletić, V. Interfacing collective atomic excitations and single photons. Phys. Rev. Lett. 98, 183601 (2007)

    Article  ADS  Google Scholar 

  28. Choi, K. S., Goban, A., Papp, S. B., van Enk, S. J. & Kimble, H. J. Entanglement of spin waves among four quantum memories. Nature 468, 412–416 (2010)

    Article  ADS  CAS  Google Scholar 

  29. Christensen, S. L. et al. Towards quantum state tomography of a single polariton state of an atomic ensemble. New J. Phys. 15, 015002 (2013)

    Article  ADS  Google Scholar 

  30. Christensen, S. L. et al. Quantum interference of a single spin excitation with a macroscopic atomic ensemble. Phys. Rev. A 89, 033801 (2014)

    Article  ADS  Google Scholar 

  31. Tanji-Suzuki, H. et al. Interaction between atomic ensembles and optical resonators: classical description. Adv. At. Mol. Opt. Phys. 60, 201–237 (2011)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. H. Schleier-Smith, E. S. Polzik and S. L. Christensen for discussions. This work was supported by the NSF, DARPA (QUASAR), and a MURI grant through AFOSR. S.Ć. acknowledges support from the Ministry of Education, Science and Technological Development of the Republic of Serbia, through grant numbers III45016 and OI171038.

Author information

Authors and Affiliations

Authors

Contributions

The experiment and analysis were carried out by R.M., H.Z., J.H. and S.Ć.; V.V. supervised the work; all authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Vladan Vuletić.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 The measured atomic state spin variance, , as a function of the heralding light photon number and corresponding probability pq of detecting one photon.

The solid red line is the prediction for broadened by the photon shot noise of the heralding light. The dashed black line shows the CSS variance for 2,030 F = 1 effective atoms used in this measurement. Error bars, 1 s.d.

Extended Data Figure 2 Dependence of the reconstructed distribution of collective spin Sz on the measurement photon number.

This dependence is illustrated by reconstructed spin distributions for photon numbers 0.5 × 104 (a), 1.1 × 104 (b), 1.7 × 104 (c), 2.7 × 104 (d) and 3.6 × 104 (e). Blue lines correspond to the CSS and red lines correspond to the heralded states. The shaded area indicates an uncertainty of 1 s.d.

Extended Data Table 1 Resonator parameters

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McConnell, R., Zhang, H., Hu, J. et al. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon. Nature 519, 439–442 (2015). https://doi.org/10.1038/nature14293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14293

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing