Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Regulation of star formation in giant galaxies by precipitation, feedback and conduction

Abstract

The Universe’s largest galaxies reside at the centres of galaxy clusters and are embedded in hot gas that, if left undisturbed, would cool quickly and create many more new stars than are actually observed1,2,3,4,5. Cooling can be regulated by feedback from accretion of cooling gas onto the central black hole, but requires an accretion rate finely tuned to the thermodynamic state of the hot gas6,7. Theoretical models in which cold clouds precipitate out of the hot gas via thermal instability and accrete onto the black hole exhibit the necessary tuning8,9,10. Recent observational evidence shows that the abundance of cold gas in the centres of clusters increases rapidly near the predicted threshold for instability11. Here we report observations showing that this precipitation threshold extends over a large range in cluster radius, cluster mass and cosmic time. We incorporate the precipitation threshold into a framework of theoretical models for the thermodynamic state of hot gas in galaxy clusters. According to that framework, precipitation regulates star formation in some giant galaxies, while thermal conduction prevents star formation in others if it can compensate for radiative cooling and shut off precipitation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hot-gas cooling time as a function of radius in galaxy clusters.
Figure 2: Hot-gas cooling time as a function of radius in galaxy clusters of differing temperatures.
Figure 3: Evolution of radial gas density and cooling-time profiles in galaxy clusters.

Similar content being viewed by others

References

  1. Fabian, A. C. Cooling flows in clusters of galaxies. Annu. Rev. Astron. Astrophys. 32, 277–318 (1994)

    Article  ADS  Google Scholar 

  2. Borgani, S. et al. X-ray properties of galaxy clusters and groups from a cosmological hydrodynamics simulation. Mon. Not. R. Astron. Soc. 348, 1078–1096 (2004)

    Article  CAS  ADS  Google Scholar 

  3. Peterson, J. R. & Fabian, A. C. X-ray spectroscopy of cooling clusters. Phys. Rep. 427, 1–39 (2006)

    Article  ADS  Google Scholar 

  4. Nagai, D., Kravtsov, A. V. & Vikhlinin, A. Effects of galaxy formation on the thermodynamics of the intracluster medium. Astrophys. J. 668, 1–14 (2007)

    Article  ADS  Google Scholar 

  5. O’Dea, C. P. et al. An infrared survey of brightest cluster galaxies. II. Why are some brightest cluster galaxies forming stars? Astrophys. J. 681, 1035–1045 (2008)

    Article  ADS  Google Scholar 

  6. Soker, N., White, R. E., David, L. P. & McNamara, B. R. A moderate cluster cooling flow model. Astrophys. J. 549, 832–839 (2001)

    Article  ADS  Google Scholar 

  7. McNamara, B. R. & Nulsen, P. E. J. Mechanical feedback from active galactic nuclei in galaxies, groups, and clusters. New J. Phys. 14, 055023 (2012)

    Article  ADS  Google Scholar 

  8. McCourt, M., Sharma, P., Quataert, E. & Parrish, I. Thermal instability in gravitationally-stratified plasma: implications for multiphase structure in clusters and galaxy haloes. Mon. Not. R. Astron. Soc. 419, 3319–3337 (2012)

    Article  ADS  Google Scholar 

  9. Sharma, P., McCourt, M., Quataert, E. & Parrish, I. Thermal instability and the feedback regulation of hot halos in clusters and groups of galaxies. Mon. Not. R. Astron. Soc. 420, 3174–3194 (2012)

    Article  ADS  Google Scholar 

  10. Gaspari, M., Ruszkowski, M. & Sharma, P. Cause and effect of feedback: multiphase gas in cluster cores heated by AGN jets. Astrophys. J. 746, 94–108 (2012)

    Article  ADS  Google Scholar 

  11. Voit, G. M. & Donahue, M. Cooling time, freefall time, and precipitation in the cores of ACCEPT galaxy clusters. Astrophys. J. 799, L1 (2015)

    Article  CAS  ADS  Google Scholar 

  12. Frenk, C. S. et al. The Santa Barbara Cluster Comparison Project. Astrophys. J. 525, 554–582 (1999)

    Article  ADS  Google Scholar 

  13. Voit, G. M., Kay, S. T. & Bryan, G. L. The baseline intracluster entropy profile from gravitational structure formation. Mon. Not. R. Astron. Soc. 364, 909–916 (2005)

    Article  ADS  Google Scholar 

  14. Cavagnolo, K. W., Donahue, M., Voit, G. M. & Sun, M. Intracluster medium entropy profiles for a Chandra archival sample of galaxy clusters. Astrophys. J. Suppl. Ser. 182, 12–32 (2009)

    Article  CAS  ADS  Google Scholar 

  15. Voit, G. M. & Bryan, G. L. Regulation of the X-ray luminosity of clusters of galaxies by cooling and supernova feedback. Nature 414, 425–427 (2001)

    Article  CAS  ADS  Google Scholar 

  16. Zakamska, N. L. & Narayan, R. Models of galaxy clusters with thermal conduction. Astrophys. J. 582, 162–169 (2003)

    Article  ADS  Google Scholar 

  17. Voigt, L. M. & Fabian, A. C. Thermal conduction and reduced cooling flows in galaxy clusters. Mon. Not. R. Astron. Soc. 347, 1130–1149 (2004)

    Article  ADS  Google Scholar 

  18. Voit, G. M. Quasi-steady configurations of conductive intracluster media. Astrophys. J. 740, 28–38 (2011)

    Article  ADS  Google Scholar 

  19. Bregman, J. N. & David, L. P. Heat conduction in cooling flows. Astrophys. J. 326, 639–644 (1988)

    Article  ADS  Google Scholar 

  20. Li, Y. & Bryan, G. L. Modeling active galactic nucleus feedback in cool-core clusters: the balance between heating and cooling. Astrophys. J. 789, 54–67 (2014)

    Article  ADS  Google Scholar 

  21. Li, Y. & Bryan, G. L. Modeling active galactic nucleus feedback in cool-core clusters: the formation of cold clumps. Astrophys. J. 789, 153–164 (2014)

    Article  ADS  Google Scholar 

  22. Gaspari, M., Ruszkowski, M. & Oh, S. P. Chaotic cold accretion onto black holes. Mon. Not. R. Astron. Soc. 432, 3401–3422 (2013)

    Article  ADS  Google Scholar 

  23. Gaspari, M., Ruszkowski, M., Oh, S. P., Brighenti, F. & Temi, P. Chaotic cold accretion onto black holes in rotating atmospheres. Preprint at http://arxiv.org/abs/1407.7531 (2014)

  24. Sharma, P., McCourt, M., Parrish, I. & Quataert, E. On the structure of hot gas in halos: implications for the LX-TX relation and missing baryons. Mon. Not. R. Astron. Soc. 427, 1219–1228 (2012)

    Article  ADS  Google Scholar 

  25. Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997)

    Article  ADS  Google Scholar 

  26. Bernardi, M. et al. The luminosities, sizes, and velocity dispersions of brightest cluster galaxies: implications for formation history. Astron. J. 133, 1741–1755 (2007)

    Article  ADS  Google Scholar 

  27. Hoffer, A. S., Donahue, M., Hicks, A. & Barthelemy, R. S. Infrared and ultraviolet star formation in brightest cluster galaxies in the ACCEPT sample. Astrophys. J. Suppl. Ser. 199, 23–38 (2012)

    Article  ADS  Google Scholar 

  28. McDonald, M. et al. The growth of cool cores and evolution of cooling properties in a sample of 83 galaxy clusters at 0.3<z<1.2 selected from the SPT-SZ survey. Astrophys. J. 774, 23–45 (2013)

    Article  ADS  Google Scholar 

  29. Vikhlinin, A. et al. Chandra Cluster Cosmology Project. II. Samples and X-ray data reduction. Astrophys. J. 692, 1033–1059 (2009)

    Article  ADS  Google Scholar 

  30. McDonald, M. et al. A massive, cooling-flow-induced starburst in the core of a luminous cluster of galaxies. Nature 774, 23–45 (2012)

    Google Scholar 

Download references

Acknowledgements

G.M.V. and M.D. acknowledge NSF support through grant AST-0908819. G.L.B. acknowledges NSF AST-1008134, AST-1210890, NASA grant NNX12AH41G, and XSEDE Computational resources. M.McD. acknowledges support by NASA through a Hubble Fellowship grant HST-HF51308.01-A awarded by the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., for NASA, under contract NAS 5-26555.

Author information

Authors and Affiliations

Authors

Contributions

G.M.V.: theoretical models, data interpretation, manuscript preparation; M.D.: data analysis, data interpretation, discussions, manuscript review; G.L.B.: theoretical models, discussions, manuscript review; M.McD.: data analysis, discussions, manuscript preparation, manuscript review.

Corresponding author

Correspondence to G. M. Voit.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Voit, G., Donahue, M., Bryan, G. et al. Regulation of star formation in giant galaxies by precipitation, feedback and conduction. Nature 519, 203–206 (2015). https://doi.org/10.1038/nature14167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14167

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing