Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records

Subjects

An Addendum to this article was published on 19 August 2015

Abstract

Theory and climate modelling suggest that the sensitivity of Earth’s climate to changes in radiative forcing could depend on the background climate. However, palaeoclimate data have thus far been insufficient to provide a conclusive test of this prediction. Here we present atmospheric carbon dioxide (CO2) reconstructions based on multi-site boron-isotope records from the late Pliocene epoch (3.3 to 2.3 million years ago). We find that Earth’s climate sensitivity to CO2-based radiative forcing (Earth system sensitivity) was half as strong during the warm Pliocene as during the cold late Pleistocene epoch (0.8 to 0.01 million years ago). We attribute this difference to the radiative impacts of continental ice-volume changes (the ice–albedo feedback) during the late Pleistocene, because equilibrium climate sensitivity is identical for the two intervals when we account for such impacts using sea-level reconstructions. We conclude that, on a global scale, no unexpected climate feedbacks operated during the warm Pliocene, and that predictions of equilibrium climate sensitivity (excluding long-term ice-albedo feedbacks) for our Pliocene-like future (with CO2 levels up to maximum Pliocene levels of 450 parts per million) are well described by the currently accepted range of an increase of 1.5 K to 4.5 K per doubling of CO2.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Records of late Pliocene/early Pleistocene .
Figure 2: Relationship between δ11B, climate forcing from CO2 and δ18O.
Figure 3: Pleistocene and late Pliocene time series.
Figure 4: Cross plots of forcing and temperature response.
Figure 5: Probability density functions of the slope from regressions of temperature against climate forcing.

References

  1. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1–1535 (Cambridge Univ. Press, 2013)

  2. Arrhenius, S. On the influence of carbonic acid in the air upon the temperature of the ground. Philos. Mag. 41, 237–276 (1896)

    CAS  Article  Google Scholar 

  3. Rohling, E. J. et al. Making sense of palaeoclimate sensitivity. Nature 491, 683–691 (2012)

    CAS  Article  ADS  Google Scholar 

  4. Crucifix, M. Does the Last Glacial Maximum constrain climate sensitivity? Geophys. Res. Lett. 33, L18701 (2006)

    Article  ADS  Google Scholar 

  5. Caballero, R. & Huber, M. State-dependent climate sensitivity in past warm climates and its implication for future climate projections. Proc. Natl Acad. Sci. 110, 14162–14167 (2013)

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  6. Beerling, D. J., Fox, A., Stevenson, D. S. & Valdes, P. J. Enhanced chemistry-climate feedbacks in past greenhouse worlds. Proc. Natl Acad. Sci. USA 108, 9770–9775 (2011)

    CAS  PubMed  Article  ADS  PubMed Central  Google Scholar 

  7. Meraner, K., Mauritsen, T. & Voigt, A. Robust increase in equilibrium climate sensitivity under global warming. Geophys. Res. Lett. 40, 5944–5948 (2013)

    Article  ADS  Google Scholar 

  8. Hansen, J. et al. Efficacy of climate forcings. J. Geophys. Res. 110 http://dx.doi.org/10.1029/2005JD005776 (2005)

  9. Byrne, B. & Goldblatt, C. Radiative forcing at high concentrations of well-mixed greenhouse gases. Geophys. Res. Lett. 41, 152–160 (2014)

    CAS  Article  ADS  Google Scholar 

  10. Lunt, D. J. et al. Earth system sensitivity inferred from Pliocene modelling and data. Nature Geosci. 3, 60–64 (2010)

    CAS  Article  ADS  Google Scholar 

  11. Haywood, A. M. & Valdes, P. J. Modelling Pliocene warmth: contribution of atmosphere, oceans and cryosphere. Earth Planet. Sci. Lett. 218, 363–377 (2004)

    CAS  Article  ADS  Google Scholar 

  12. Miller, K. G. et al. High tide of the warm Pliocene: implications of global sea level for Antarctic deglaciation. Geology 40, 407–410 (2012)

    CAS  Article  ADS  Google Scholar 

  13. Rohling, E. J. et al. Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature 508, 477–482 (2014)

    CAS  PubMed  Article  ADS  Google Scholar 

  14. Lunt, D. J. et al. On the causes of mid-Pliocene warmth and polar amplification. Earth Planet. Sci. Lett. 321–322, 128–138 (2012)

    Article  ADS  CAS  Google Scholar 

  15. Haywood, A. M. et al. Large-scale features of Pliocene climate: results from the Pliocene Model Intercomparison Project. Clim. Past 9, 191–209 (2013)

    Article  Google Scholar 

  16. Pagani, M., Liu, Z., LaRiviere, J. & Ravelo, A. C. High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations. Nature Geosci. 3, 27–30 (2010)

    CAS  Article  ADS  Google Scholar 

  17. Beerling, D. J. & Royer, D. L. Convergent Cenozoic CO2 history. Nature Geosci. 4, 418–420 (2011)

    CAS  Article  ADS  Google Scholar 

  18. Henehan, M. J. et al. Calibration of the boron isotope proxy in the planktonic foraminifera Globigerinoides ruber for use in palaeo-CO2 reconstruction. Earth Planet. Sci. Lett. 364, 111–122 (2013)

    CAS  Article  ADS  Google Scholar 

  19. Hönisch, B. & Hemming, N. G. Surface ocean pH response to variations in pCO2 through two full glacial cycles. Earth Planet. Sci. Lett. 236, 305–314 (2005)

    Article  ADS  CAS  Google Scholar 

  20. Foster, G. L. Seawater pH, pCO2 and [CO32-] variations in the Caribbean Sea over the last 130 kyr: a boron isotope and B/Ca study of planktic foraminifera. Earth Planet. Sci. Lett. 271, 254–266 (2008)

    CAS  Article  ADS  Google Scholar 

  21. Takahashi, K. et al. Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep Sea Res. II 56, 554–577 (2009)

    CAS  Article  ADS  Google Scholar 

  22. Lisiecki, L. E. & Raymo, M. E. A. Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20 http://dx.doi.org/10.1029/2004PA001071 (2005)

  23. Bartoli, G., Hönisch, B. & Zeebe, R. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere Glaciations. Paleoceanography 26, PA4213 (2012)

    ADS  Google Scholar 

  24. Davis, C. V., Badger, M. P. S., Bown, P. R. & Schmidt, D. N. The response of calcifying plankton to climate change in the Pliocene. Biogeosciences 10, 6131–6139 (2013)

    CAS  Article  ADS  Google Scholar 

  25. Seki, O. et al. Alkenone and boron based Plio-Pleistocene pCO2 records. Earth Planet. Sci. Lett. 292, 201–211 (2010)

    CAS  Article  ADS  Google Scholar 

  26. Badger, M. P. S., Schmidt, D. N., Mackensen, A. & Pancost, R. D. High resolution alkenone palaeobarometry indicates relatively stable pCO2 during the Pliocene (3.3 to 2.8 Ma). Phil. Trans. R. Soc. A 373, 20130094 (2013)

    Article  CAS  Google Scholar 

  27. Petit, J. R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429–436 (1999)

    CAS  Article  ADS  Google Scholar 

  28. Lüthi, D. et al. High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature 453, 379–382 (2008)

    PubMed  Article  ADS  CAS  Google Scholar 

  29. Siegenthaler, U. et al. Stable carbon cycle-climate relationship during the Late Pleistocene. Science 310, 1313–1317 (2005)

    CAS  PubMed  Article  ADS  Google Scholar 

  30. Hönisch, B., Hemming, G., Archer, D., Siddal, M. & McManus, J. Atmospheric carbon dioxide concentration across the Mid-Pleistocene Transition. Science 324, 1551–1554 (2009)

    PubMed  Article  ADS  CAS  Google Scholar 

  31. Köhler, P. et al. What caused Earth's temperature variations during the last 800,000 years? Data-based evidence on radiative forcing and constraints on climate sensitivity. Quat. Sci. Rev. 29, 129–145 (2010)

    Article  ADS  Google Scholar 

  32. Rohling, E. J., Medina-Elizalde, M., Shepherd, J. G., Siddall, M. & Stanford, J. D. Sea surface and high-latitude temperature sensitivity to radiative forcing of climate over several glacial cycles. J. Clim. 25, 1635–1656 (2012)

    Article  ADS  Google Scholar 

  33. DeConto, R. M. et al. Thresholds for Cenozoic bipolar glaciation. Nature 455, 652–656 (2008)

    CAS  PubMed  Article  ADS  Google Scholar 

  34. Shackleton, N. Oxygen isotope analyses and Pleistocene temperatures re-assessed. Nature 215, 15–17 (1967)

    CAS  Article  ADS  Google Scholar 

  35. van de Wal, R. S. W., de Boer, B., Lourens, L. J., Köhler, P. & Bintanja, R. Reconstruction of a continuous high-resolution CO2 record over the past 20 million years. Clim. Past 7, 1459–1469 (2011)

    Article  Google Scholar 

  36. Balco, G. & Rovey, C. W., II Absolute chronology for major Pleistocene advances of the Laurentide Ice Sheet. Geology 38, 795–798 (2010)

    CAS  Article  ADS  Google Scholar 

  37. Bailey, I. et al. An alternative suggestion for the Pliocene onset of major northern hemisphere glaciation based on geochemical provenance of North Atlantic Ocean ice-rafted debris. Quat. Sci. Rev. 75, 181–194 (2013)

    Article  ADS  Google Scholar 

  38. Hidy, A. J., Gosse, J. C., Froese, D. G., Bond, J. D. & Rood, D. H. A latest Pliocene age for the earliest and most extensive Cordilleran Ice Sheet in northwestern Canada. Quat. Sci. Rev. 61, 77–84 (2013)

    Article  ADS  Google Scholar 

  39. Lunt, D. J., Foster, G. L., Haywood, A. M. & Stone, E. J. Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels. Nature 454, 1102–1105 (2008)

    CAS  PubMed  Article  ADS  Google Scholar 

  40. Dowsett, H. J. et al. Assessing confidence in Pliocene sea surface temperatures to evaluate predictive models. Nature Clim. Change 2, 365–371 (2012)

    Article  ADS  Google Scholar 

  41. Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012)

    CAS  PubMed  Article  ADS  Google Scholar 

  42. Williams, R. G., Goodwin, P., Ridgwell, A. & Woodworth, P. L. How warming and steric sea level rise relate to cumulative carbon emissions. Geophys. Res. Lett. 39 http://dx.doi.org/10.1029/2012GL052771 (2012)

  43. Myhre, G., Highwood, E. J., Shine, K. P. & Stordal, F. New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25, 2715–2718 (1998)

    CAS  Article  ADS  Google Scholar 

  44. Rohling, E. J. et al. Antarctic temperature and global sea level closely coupled over the past five glacial cycles. Nature Geosci. 2, 500–504 (2009)

    CAS  Article  ADS  Google Scholar 

  45. Elderfield, H. et al. Evolution of ocean tempeature and ice volume through the Mid-Pleistocene climate transition. Science 337, 704–709 (2012)

    CAS  Article  ADS  PubMed  Google Scholar 

  46. Naish, T. R. & Wilson, G. S. Constraints on the amplitude of Mid-Pliocene (3.6–2.4 Ma) eustatic sea-level fluctuations from the New Zealand shallow-marine sediment record. Phil. Trans. R. Soc. A 367, 169–187 (2009)

    CAS  PubMed  Article  ADS  Google Scholar 

  47. Fedorov, A. V. et al. Patterns and mechanisms of early Pliocene warmth. Nature 496, 43–49 (2013)

    CAS  Article  ADS  PubMed  Google Scholar 

  48. O’Brien, C. L. et al. High sea surface temperatures in tropical warm pools during the Pliocene. Nature Geosci. 7, 606–611 (2014)

    Article  ADS  CAS  Google Scholar 

  49. Zhang, Y. G., Pagani, M., Liu, Z., Bohaty, S. M. & DeConto, R. M. A 40-million-year history of atmospheric CO2 . Phil. Trans. R. Soc. A 371, 20130096 (2013)

    PubMed  Article  ADS  CAS  Google Scholar 

  50. Kürschner, W. M., van der Burgh, J., Visscher, H. & Dilcher, D. L. Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations. Mar. Micropaleontol. 27, 299–312 (1996)

    Article  ADS  Google Scholar 

  51. Lawrence, K. T. et al. Time-transgressive productivity changes in the North Atlantic upon Northern Hemisphere glaciation. Paleoceanography 28, 740–751 (2013)

    Article  ADS  Google Scholar 

  52. Barker, S., Greaves, M. & Elderfield, H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochem. Geophys. Geosyst. 4, 8407 (2003)

    Article  ADS  CAS  Google Scholar 

  53. Yu, J., Elderfield, H., Greaves, M. & Day, J. Preferential dissolution of benthic foraminiferal calcite during laboratory reductive cleaning. Geochem. Geophys. Geosyst. 8, Q06016 (2007)

    Article  ADS  CAS  Google Scholar 

  54. Rae, J. W. B., Foster, G. L., Schmidt, D. N. & Elliott, T. Boron isotopes and B/Ca in benthic foraminifera: proxies for the deep ocean carbonate system. Earth Planet. Sci. Lett. 302, 403–413 (2011)

    CAS  Article  ADS  Google Scholar 

  55. Medina-Elizalde, M., Lea, D. W. & Fantle, M. S. Implications of seawater Mg/Ca variability for Plio-Pleistocene tropical climate reconstruction. Earth Planet. Sci. Lett. 269, 585–595 (2008)

    Article  ADS  CAS  Google Scholar 

  56. Evans, D. & Muller, W. Deep time foraminifera Mg/Ca paleothermometry: nonlinear correction for secular change in seawater Mg/Ca. Paleoceanography 27, PA4205 (2012)

    Article  ADS  Google Scholar 

  57. Fantle, M. S. & DePaolo, D. J., Sr isotopes and pore fluid chemistry in carbonate sediment of the Ontong Java Plateau: calcite recrystallisation rates and evidence for a rapid rise in seawater Mg over the last 10 million years. Geochim. Cosmochim. Acta 70, 3883–3904 (2006)

    CAS  Article  ADS  Google Scholar 

  58. Delaney, M. L., Bé, W. H. A. & Boyle, E. A. Li, Sr, Mg, and Na in foraminiferal calcite shells from laboratory culture, sediment traps, and sediment cores. Geochim. Cosmochim. Acta 49, 1327–1341 (1985)

    CAS  Article  ADS  Google Scholar 

  59. Dekens, P. S., Lea, D. W., Pak, D. K. & Spero, H. J. Core top calibration of Mg/Ca in tropical foraminifera: refining paleotemperature estimation. Geochem. Geophys. Geosyst. 3, http://dx.doi.org/10.1029/2001GC000200 (2002)

  60. Catanzaro, E. J. et al. Boric Assay; Isotopic, and Assay Standard Reference Materials (US National Bureau of Standards Special Publication 260-17, 1970)

  61. Klochko, K., Kaufman, A. J., Yoa, W., Byrne, R. H. & Tossell, J. A. Experimental measurement of boron isotope fractionation in seawater. Earth Planet. Sci. Lett. 248, 276–285 (2006)

    CAS  Article  ADS  Google Scholar 

  62. Hemming, N. G. & Hanson, G. N. Boron isotopic composition and concentration in modern marine carbonates. Geochim. Cosmochim. Acta 56, 537–543 (1992)

    CAS  Article  ADS  Google Scholar 

  63. Hemming, N. G., Reeder, R. J. & Hanson, G. N. Mineral-fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochim. Cosmochim. Acta 59, 371–379 (1995)

    CAS  Article  ADS  Google Scholar 

  64. Dickson, A. G. Thermodynamics of the dissociation of boric-acid in synthetic seawater from 273.15 to 318.15 K. Deep-Sea Res. 37, 755–766 (1990)

    CAS  Article  ADS  Google Scholar 

  65. Foster, G. L., Pogge von Strandmann, P. A. E. & Rae, J. W. B. Boron and magnesium isotopic composition of seawater. Geochem. Geophys. Geosyst. 11, Q08015 (2010)

    Article  ADS  CAS  Google Scholar 

  66. Herbert, T. D., Cleaveland Peterson, L., Lawrence, K. T. & Liu, Z. Tropical ocean temperatures over the past 3.5 million years. Science 328, 1530–1534 (2010)

    CAS  PubMed  Article  ADS  Google Scholar 

  67. Lemarchand, D., Gaillardet, J., Lewin, E. & Allegre, C. J. Boron isotope systematics in large rivers: implications for the marine boron budget and paleo-pH reconstruction over the Cenozoic. Chem. Geol. 190, 123–140 (2002)

    CAS  Article  ADS  Google Scholar 

  68. Foster, G. L., Lear, C. H. & Rae, J. W. B. The evolution of pCO2, ice volume and climate during the middle Miocene. Earth Planet. Sci. Lett. 341-344, 243–254 (2012)

    CAS  Article  ADS  Google Scholar 

  69. Raitzsch, H. B. Cenozoic boron isotope variations in benthic foraminifers. Geology 41, 591–594 (2013)

    CAS  Article  ADS  Google Scholar 

  70. Zeebe, R. & Wolf-Gladrow, D. A. CO2 in Seawater: Equilibrium, Kinetics, Isotopes (Elsevier Oceanography Series 65, 2001)

    Google Scholar 

  71. R Core Team. R: a Language and Environment for Statistical Computinghttp://www.R-project.org/ (R Foundation for Statistical Computing, 2013)

  72. Tyrrell, T. & Zeebe, R. E. History of carbonate ion concentration over the last 100 million years. Geochim. Cosmochim. Acta 68, 3521–3530 (2004)

    CAS  Article  ADS  Google Scholar 

  73. Clark, P. U. et al. The middle Pleistocene transition: characteristics, mechanisms, and implications for long-term changes in pCO2 . Quat. Sci. Rev. 25, 3150–3184 (2006)

    Article  ADS  Google Scholar 

  74. Foster, G. L. et al. Interlaboratory comparison of boron isotope analyses of boric acid, seawater and marine CaCO3 by MC-ICPMS and NTIMS. Chem. Geol. 358, 1–14 (2013)

    CAS  Article  ADS  Google Scholar 

  75. Bolton, C. T. & Stoll, H. M. Late Miocene threshold response of marine algae to carbon dioxide limitation. Nature 500, 558–562 (2013)

    CAS  PubMed  Article  ADS  Google Scholar 

  76. Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

    CAS  PubMed  Article  ADS  Google Scholar 

  77. Lawrence, K. T., Herbert, T. D., Brown, C. M., Raymo, M. E. & Haywood, A. M. High-amplitude variations in North Atlantic sea surface temperature during the early Pliocene warm period. Paleoceanography 24, PA2218 (2009)

    Article  ADS  Google Scholar 

  78. Lawrence, K. T., Sosdian, S., White, J. M. & Rosenthal, Y. North Atlantic climate evolution through the Plio-Pleistocene climate transistions. Earth Planet. Sci. Lett. 300, 329–342 (2010)

    CAS  Article  ADS  Google Scholar 

  79. Brierley, C. M. et al. Greatly expanded tropical warm pool and weakened Hadley Circulation in the Early Pliocene. Science 323, 1714–1718 (2009)

    CAS  PubMed  Article  ADS  Google Scholar 

  80. Etourneau, J., Martinez, P., Blanz, T. & Schneider, R. Pliocene-Pleistocene variability of upwelling activity, productivity, and nutrient cycling in the Benguela region. Geology 37, 871–874 (2009)

    CAS  Article  ADS  Google Scholar 

  81. Etourneau, J., Schneider, R., Blanz, T. & Martinez, P. Intensification of the Walker and Hadley atmospheric circulations during the Pliocene-Pleistocene climate transition. Earth Planet. Sci. Lett. 297, 103–110 (2010)

    CAS  Article  ADS  Google Scholar 

  82. Lawrence, K. T., Liu, Z. & Herbert, T. D. Evolution of the eastern tropical Pacific through Plio-Pleistocene glaciation. Science 312, 79–83 (2006)

    CAS  PubMed  Article  ADS  Google Scholar 

  83. Martinez-Garcia, A., Rosell-Melé, A., McClymont, E. L., Gersonde, R. & Haug, G. H. Subpolar link to the emergence of the modern equatorial Pacific cold tongue. Science 328, 1550–1553 (2010)

    CAS  PubMed  Article  ADS  Google Scholar 

  84. Dekens, P. S., Ravelo, A. C. & McCarthy, M. D. Warm upwelling regions in the Pliocene warm period. Paleoceanography 22, PA3211. 22 (2007)

    Article  Google Scholar 

  85. Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. D 108, 4407 (2003)

    Article  ADS  Google Scholar 

  86. Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E. & Saunby, M. Reassessing biases and other uncertainties in sea surface temperature observations in situ since 1850: 1. Measurement and sampling uncertainty. J. Geophys. Res. 116, D14103 (2011a)

    Article  ADS  Google Scholar 

  87. Kennedy, J. J., Rayner, N. A., Smith, R. O., Parker, D. E. & Saunby, M. Reassessing biases and other uncertainties in sea surface temperature observations measured in situ since 1850: 2. Biases and homogenization. J. Geophys. Res. 116, D14104 (2011b)

    Article  ADS  Google Scholar 

  88. Efron, B. Bootstrap methods: another look at the jacknife. Ann. Stat. 7, 1–26 (1979)

    MATH  Article  Google Scholar 

  89. Locarnini, R. A. et al. World Ocean Atlas 2013, Volume 1: Temperature (NOAA Atlas NESDIS 73, 2013)

  90. Schlitzer, R. Ocean Data View http://odv.awi.de (2012)

    Google Scholar 

  91. Waelbroeck, C. et al. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geosci. 2, 127–132 (2009)

    CAS  Article  ADS  Google Scholar 

  92. Müller, P. J., Kirst, G., Ruhland, G., Von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index UK'37 based on core-tops from the eastern South Atlantic and the global ocean (60 N-60 S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998)

    Article  ADS  Google Scholar 

  93. Siddall, M. et al. Sea-level fluctuations during the last glacial cycle. Nature 423, 853–858 (2003)

    CAS  PubMed  Article  ADS  Google Scholar 

Download references

Acknowledgements

This study used samples provided by the International Ocean Discovery Program (IODP). We thank A. Milton at the University of Southampton for maintaining the mass spectrometers used in this study. S. Cherry and T. Garlichs are acknowledged for their help with sample preparation and we thank D. Liebrand for his assistance with time series analysis. This study was funded by NERC grants NE/H006273/1 to R.D.P., G.L.F., D.J.L. and D.N.S. (which supported M.A.M.-B. and M.P.S.B.) and NE/I006346/1 to P.F.S. and G.L.F. M.A.M.-B. was also supported by the European Community through a Marie Curie Fellowship and E.J.R. was supported by 2012 Australian Laureate Fellowship FL120100050. G.L.F. also wishes to acknowledge the support of Yale University (as Visiting Flint Lecturer).

Author information

Authors and Affiliations

Authors

Contributions

M.A.M.-B. and T.B.C. collected the data and G.L.F. performed all relevant calculations. P.F.S. helped with sample preparation for δ11B analysis and refined the age models used for ODP Sites 999 and 662. G.L.F., M.A.M.-B. and T.B.C. constructed the first draft of the manuscript and all authors contributed specialist insights that helped refine the manuscript. G.L.F., R.D.P., D.J.L. and D.N.S. conceived the study.

Corresponding author

Correspondence to G. L. Foster.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Maps of modern mean annual and SST labelled with site locations.

a, Map of sites used for reconstructions with the mean annual modern from the reconstruction of ref. 21. b, Map of the sites (and labelled with their depths) used to generate the SST stack with mean annual modern SST from the World Ocean Atlas 2013 (ref. 89). mbsl, metres below sea level, where DSDP is the Deep Sea Drilling Project. Figures constructed and data visualized in Ocean Data View90.

Extended Data Figure 2 Comparisons of boron-isotope-based estimates with other methodologies and archives.

a, Estimates of from published δ11B records compared to ice-core CO2 (red line; refs 27, 28, 29). The dotted line is for = 278 μatm. In a the data of ref. 20 (blue circles) have been recalculated in the same manner as described here for the Pliocene, including using the G. ruber δ11B–pH calibration of ref. 18. The error band encompasses 68% (dark blue) and 95% (light blue) of 10,000 Monte Carlo simulations of (see main text). Also shown are the G. sacculifer-based δ11B– record of ref. 30 (green circles). In this case error bars (±25 µatm) are as determined in that study. Despite similar analytical uncertainty, the smaller error bars for the ref. 30 data result from these authors not propagating the δ11B–pH calibration uncertainty and considering a smaller range in temperature, salinity and alkalinity uncertainty than in this study (±0.76 °C, ±1 psu, ±27 µmol kg−1 versus ±3 °C, ±3 practical salinity units (psu), ±175 µmol kg−1 with a flat probability in this study). b, δ11B-based record generated here (blue closed circles and 95% and 68% uncertainty bands) with from the δ13C of alkenones from published studies. See Fig. 1 legend for details. c, δ11B-based record generated here (blue closed circles and 95% and 68% uncertainty bands) with from previous δ11B-based studies and from plant stomata. See Fig. 1 legend for details. df, Comparison of cross plots of CO2 forcing and ΔMAT for our high-resolution δ11B–CO2 record (d), published alkenone CO2 data (e) and published low-resolution δ11B–CO2 data (f). In each panel the slopes of regression lines fitted through the data are labelled (±1 standard error, se). In d ice-core CO2 data are shown as red open circles and Pliocene δ11B–CO2 as open blue circles. In e and f, ice-core CO2 data are shown in grey for clarity. In e, alkenone CO2 data are from the following sources: ODP 1208 (orange16), ODP 806 (purple16); ODP 925 (brown49); ODP 999 (green circles25; green squares26). In c δ11B–CO2 data are from ODP 999 (blue25 and red23).

Extended Data Figure 3 Probability density functions for equivalently aged samples from ODP Site 662 and ODP Site 999.

Each panel, labelled with age (in units of kyr ago), shows the probability density function for a given estimate of from ODP Site 662 (red) and ODP Site 999 (blue). In most instances equal age samples are compared, but in some cases either where variability is high and/or equivalent age samples are absent, we show neighbouring samples from ODP Site 999 (for example, bottom left and right). This comparison indicates that although the mean of ODP 662 tends to be higher than ODP 999, there is always a high degree of overlap between the estimates from the two sites.

Extended Data Figure 4 Probability density functions of and benthic δ18O and time series analysis.

a, Probability density functions of the residuals of δ11B– about the long-term trend for the late Pliocene (this study; blue line), the mid-Pleistocene30 (green line) and late Pleistocene19,20 (red line). Dashed vertical lines show the upper and lower limit (labelled) encompassing 90% of the data. The residual of the ice-core CO2 record27,28,29 about the long-term mean for 0–0.8 Myr ago plus a random noise equivalent to ±35 μatm (the typical δ11B–CO2 uncertainty) is shown as a black dashed probability density function. b, Probability density functions of the residual of LR04 benthic δ18O from the long-term trend for the late Pleistocene (red), mid-Pleistocene (green) and late Pliocene (blue). Dashed vertical lines show the upper and lower limit (labelled) encompassing 90% of the data. In contrast to , δ18O clearly exhibits an increase in variability over the last 3.3 Myr. c, d, Evolutive power spectral analyses of Pliocene (c) and resampled δ18O (ref. 22) (d). The evolutive power spectra was computed using the fast Fourier transform of overlapping segments with a 300-kyr moving window. Before spectral analysis, all series were notch-filtered to remove the long-term trend (bandwidth = 0.005), and interpolated to 12-kyr intervals (the real resolution of our record is 13.5 kyr).

Extended Data Figure 5 Summary of sea-level records used to calculate ΔFLI.

In a and b the red curve is from ref. 13 (R14) based on the planktic δ18O from the Mediterranean Sea and the methods developed for the Red Sea by ref. 93. We have removed those intervals identified as possible sapropel (organic-matter-rich sediments) events and linearly interpolated across gaps in the original record. The black curve is the sea-level record from an inversion of the benthic oxygen isotope record of ref. 76 (tuned to LR04 here) using an ice sheet model35 (VDW11). The blue curve in a is based on the planktic/bulk δ18O from the Red Sea44 for the interval 0–520 kyr and the paired Mg/Ca and benthic δ18O from the deep South Pacific for the interval 520–800 kyr (ref. 45) (R09+E12). The green curve in b is based on a scaling of the LR04 δ18O stack to indicators of sea level from sequence stratigraphy (ref. 46 recalculated by ref. 12). In each the uncertainty in the reconstruction at 95% confidence is shown by an appropriately coloured error band. Marine isotope stages mentioned in text are labelled. RSL, relative sea-level change (in metres), relative to the modern value.

Extended Data Figure 6 Stacked sea surface temperature record.

a, b, Number of records that contribute to the SST stack through time. c, d, Uncertainty in the SST stack due to analytical uncertainty (at 95% confidence; red band) and showing the influence of jacknifing (that is, removing one record at a time; grey lines show maximum and minimum). Note that the jacknifing illustrates that no single record has an undue influence on the SST stack.

Extended Data Figure 7 Comparison of global SST from the HadSST3 data set with SST HadISST1 from ODP sites.

a, Historic global mean annual sea surface temperature anomaly from the HadSST3 data set86,87 (red circles) and mean SST at locations above the ODP sites that make up the SST stack from HadISST1 (blue; local SST). Thick red and blue lines are non-parametric smoothers through both data sets. b, Cross plot of global mean annual SST and local SST. The regression line determined using linear regression has a slope of 1 and intercept of close to 0, so local SST captures the global trend well. The shaded blue band in b represents the 95% confidence interval of the regression line.

Extended Data Figure 8 The influence of TA and δ11Bsw on determinations of Sp using linear regression.

a, b, Artificial δ11B record (where δ11B foram is the boron isotopic composition of an artificial foraminifera; a) and temperature record (b). c, d, Cross plot and regressions of δ11B–ΔFCO2 and global temperature for TA dramatically varying in the range 2,000–2,600 µmol kg−1 (TA; c) and δ11Bsw from 38.8‰ to 40.4‰ (d). The slopes of the regressions, which are very similar regardless of parameter choice, are colour-coded and listed in the bottom right-hand corner of c and d. e, f, Probability density function of slope for regressions of Pliocene-aged ΔMAT against ΔFCO2 (e) and ΔFCO2,LI (f), where TA is decreasing by 200 µmol kg−1 (dashed) and increasing by 200 µmol kg−1 (dotted). Note that despite large variations in TA the slope of the regressions do not change greatly.

Supplementary information

Supplementary Information

This file contains Supplementary Tables 1-5. (XLSX 607 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martínez-Botí, M., Foster, G., Chalk, T. et al. Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records. Nature 518, 49–54 (2015). https://doi.org/10.1038/nature14145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature14145

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing