Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation


The development of new reactions forming asymmetric carbon–carbon bonds has enabled chemists to synthesize a broad range of important carbon-containing molecules, including pharmaceutical agents, fragrances and polymers1. Most strategies to obtain enantiomerically enriched molecules rely on either generating new stereogenic centres from prochiral substrates or resolving racemic mixtures of enantiomers. An alternative strategy—dynamic kinetic asymmetric transformation—involves the transformation of a racemic starting material into a single enantiomer product, with greater than 50 per cent maximum yield2,3. The use of stabilized nucleophiles (pKa < 25, where Ka is the acid dissociation constant) in palladium-catalysed asymmetric allylic alkylation reactions has proved to be extremely versatile in these processes4,5. Conversely, the use of non-stabilized nucleophiles in such reactions is difficult and remains a key challenge6,7,8,9. Here we report a copper-catalysed dynamic kinetic asymmetric transformation using racemic substrates and alkyl nucleophiles. These nucleophiles have a pKa of ≥50, more than 25 orders of magnitude more basic than the nucleophiles that are typically used in such transformations. Organometallic reagents are generated in situ from alkenes by hydrometallation and give highly enantioenriched products under mild reaction conditions. The method is used to synthesize natural products that possess activity against tuberculosis and leprosy, and an inhibitor of para-aminobenzoate biosynthesis. Mechanistic studies indicate that the reaction proceeds through a rapidly isomerizing intermediate. We anticipate that this approach will be a valuable complement to existing asymmetric catalytic methods.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Asymmetric allylic alkylation (AAA) procedures.
Figure 2: Dynamic kinetic AAA with alkylzirconium nucleophiles generated from alkenes.
Figure 3: Scale-up and applications of the method to access tricyclic structures and natural products.
Figure 4: Mechanistic analysis.


  1. Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. (eds) Comprehensive Asymmetric Catalysis: Suppl. 2 (Springer, 2004)

  2. Huerta, F. F., Minidis, A. B. E. & Bäckvall, J. E. Racemisation in asymmetric synthesis. Dynamic kinetic resolution and related processes in enzyme and metal catalysis. Chem. Soc. Rev. 30, 321–331 (2001)

    CAS  Article  Google Scholar 

  3. Vedejs, E. & Jure, M. Efficiency in nonenzymatic kinetic resolution. Angew. Chem. Int. Edn 44, 3974–4001 (2005)

    CAS  Article  Google Scholar 

  4. Trost, B. M. & VanVranken, D. L. Asymmetric transition metal-catalyzed allylic alkylations. Chem. Rev. 96, 395–422 (1996)

    CAS  Article  Google Scholar 

  5. Trost, B. M. & Fandrick, D. R. Palladium-catalyzed dynamic kinetic asymmetric allylic alkylation with the DPPBA ligands. Aldrichim. Acta 40, 59–72 (2007)

    CAS  Google Scholar 

  6. Pfaltz, A. & Lautens, M. in Comprehensive Asymmetric Catalysis ii Vol. 2 (eds Jacobsen, E. N., Pfaltz, A. & Yamamoto, H. ) Ch. 24 833–884 (Springer, 1999)

    Google Scholar 

  7. Trost, B. M. & Thaisrivongs, D. A. Strategy for employing unstabilized nucleophiles in palladium-catalyzed asymmetric allylic alkylations. J. Am. Chem. Soc. 130, 14092–14093 (2008)

    CAS  Article  Google Scholar 

  8. Sha, S. C., Zhang, J. D., Carroll, P. J. & Walsh, P. J. Raising the pKa limit of “soft” nucleophiles in palladium-catalyzed allylic substitutions: application of diarylmethane pronucleophiles. J. Am. Chem. Soc. 135, 17602–17609 (2013)

    CAS  Article  Google Scholar 

  9. Lu, Z. & Ma, S. Metal-catalyzed enantioselective allylation in asymmetric synthesis. Angew. Chem. Int. Edn 47, 258–297 (2008)

    CAS  Article  Google Scholar 

  10. Geurts, K., Fletcher, S. P., van Zijl, A. W., Minnaard, A. J. & Feringa, B. L. Copper-catalyzed asymmetric allylic substitution reactions with organozinc and Grignard reagents. Pure Appl. Chem. 80, 1025–1037 (2008)

    CAS  Article  Google Scholar 

  11. Teichert, J. F. & Feringa, B. L. Phosphoramidites: privileged ligands in asymmetric catalysis. Angew. Chem. Int. Edn 49, 2486–2528 (2010)

    CAS  Article  Google Scholar 

  12. Trost, B. M. & Bunt, R. C. Asymmetric induction in allylic alkylations of 3-(acyloxy)cycloalkenes. J. Am. Chem. Soc. 116, 4089–4090 (1994)

    CAS  Article  Google Scholar 

  13. Misale, A., Niyomchon, S., Luparia, M. & Maulide, N. Asymmetric palladium-catalyzed allylic alkylation using dialkylzinc reagents: a remarkable ligand effect. Angew. Chem. Int. Edn 53, 7068–7073 (2014)

    CAS  Article  Google Scholar 

  14. Trost, B. M. & Verhoeven, T. R. Allylic substitutions with retention of stereochemistry. J. Org. Chem. 41, 3215–3216 (1976)

    CAS  Article  Google Scholar 

  15. Matsushita, H. & Negishi, E. Anti-stereospecificity in the palladium-catalyzed reactions of alkenyl-metal or aryl-metal derivatives with allylic electrophiles. Chem. Commun. 160–161 (1982)

  16. Harutyunyan, S. R., den Hartog, T., Geurts, K., Minnaard, A. J. & Feringa, B. L. Catalytic asymmetric conjugate addition and allylic alkylation with Grignard reagents. Chem. Rev. 108, 2824–2852 (2008)

    CAS  Article  Google Scholar 

  17. Alexakis, A., Bäckvall, J. E., Krause, N., Pamies, O. & Dieguez, M. Enantioselective copper-catalyzed conjugate addition and allylic substitution reactions. Chem. Rev. 108, 2796–2823 (2008)

    CAS  Article  Google Scholar 

  18. Langlois, J. B. & Alexakis, A. in Topics in Organometallic Chemistry Vol. 38, Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synthesis (ed. Kazmaier, U. ) 235–268 (Springer, 2012)

    Google Scholar 

  19. Norinder, J. & Bäckvall, J. E. Dynamic processes in the copper-catalyzed substitution of chiral allylic acetates leading to loss of chiral information. Chem. Eur. J. 13, 4094–4102 (2007)

    CAS  Article  Google Scholar 

  20. Langlois, J. B. & Alexakis, A. Dynamic kinetic asymmetric transformation in copper catalyzed allylic alkylation. Chem. Commun. 3868–3870 (2009)

  21. Langlois, J. B., Emery, D., Mareda, J. & Alexakis, A. Mechanistic identification and improvement of a direct enantioconvergent transformation in copper-catalyzed asymmetric allylic alkylation. Chem. Sci. 3, 1062–1069 (2012)

    CAS  Article  Google Scholar 

  22. Giacomina, F. & Alexakis, A. Construction of enantioenriched cyclic compounds by asymmetric allylic alkylation and ring-closing metathesis. Eur. J. Org. Chem. 2013, 6710–6721 (2013)

    CAS  Article  Google Scholar 

  23. Maksymowicz, R. M., Roth, P. M. C. & Fletcher, S. P. Catalytic asymmetric carbon-carbon bond formation using alkenes as alkylmetal equivalents. Nature Chem. 4, 649–654 (2012)

    ADS  CAS  Article  Google Scholar 

  24. Sidera, M., Roth, P. M. C., Maksymowicz, R. M. & Fletcher, S. P. Formation of quaternary centers by copper-catalyzed asymmetric conjugate addition of alkylzirconium reagents. Angew. Chem. Int. Edn 52, 7995–7999 (2013)

    CAS  Article  Google Scholar 

  25. Seemann, M., Schöller, M., Kudis, S. & Helmchen, G. Syntheses of enantiomerically pure cyclopent-2-ene-1-carboxylic acid and (cyclopent-2-enyl)acetic acid by enantioselective palladium-catalyzed allylic alkylations — synthesis of enantiomerically pure (-)-chaulmoogric acid. Eur. J. Org. Chem. 2122–2127 (2003)

  26. Jacobsen, P. L. & Levy, L. Mechanism by which hydnocarpic acid inhibits mycobacterial multiplication. Antimicrob. Agents Chemother. 3, 373–379 (1973)

    CAS  Article  Google Scholar 

  27. Cabot, M. C. & Goucher, C. R. Chaulmoogric acid-assimilation into the complex lipids of mycobacteria. Lipids 16, 146–148 (1981)

    CAS  Article  Google Scholar 

  28. Wang, J. F. et al. Antituberculosis agents and an inhibitor of the para-aminobenzoic acid biosynthetic pathway from Hydnocarpus anthelminthica seeds. Chem. Biodivers. 7, 2046–2053 (2010)

    CAS  Article  Google Scholar 

  29. Streitwieser, A., Jayasree, E. G., Hasanayn, F. & Leung, S. S. H. A theoretical study of SN2′ reactions of allylic halides: role of ion pairs. J. Org. Chem. 73, 9426–9434 (2008)

    CAS  Article  Google Scholar 

  30. Zhang, H. & Gschwind, R. M. Structure identification of precatalytic copper phosphoramidite complexes in solution. Angew. Chem. Int. Edn 45, 6391–6394 (2006)

    CAS  Article  Google Scholar 

Download references


We acknowledge financial support from the EPSRC (EP/H003711/1, a Career Acceleration Fellowship to S.P.F.). B. Odell and T. Claridge are thanked for assistance with the NMR experiments.

Author information

Authors and Affiliations



H.Y., E.R. and M.S. performed the experiments. All authors contributed to designing, analysing and discussing the experiments; S.P.F. conceived the work and guided the research. S.P.F. wrote the manuscript with assistance from H.Y. All authors contributed to discussing and editing the manuscript.

Corresponding author

Correspondence to Stephen P. Fletcher.

Ethics declarations

Competing interests

The authors are all named as inventors on a UK patent application filed by Isis Innovation, which is the technology transfer arm of the University of Oxford.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data – see contents page for details. (PDF 37426 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

You, H., Rideau, E., Sidera, M. et al. Non-stabilized nucleophiles in Cu-catalysed dynamic kinetic asymmetric allylic alkylation. Nature 517, 351–355 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing