Letter | Published:

Deterministic switching of ferromagnetism at room temperature using an electric field

Nature volume 516, pages 370373 (18 December 2014) | Download Citation

Abstract

The technological appeal of multiferroics is the ability to control magnetism with electric field1,2,3. For devices to be useful, such control must be achieved at room temperature. The only single-phase multiferroic material exhibiting unambiguous magnetoelectric coupling at room temperature is BiFeO3 (refs 4 and 5). Its weak ferromagnetism arises from the canting of the antiferromagnetically aligned spins by the Dzyaloshinskii–Moriya (DM) interaction6,7,8,9. Prior theory considered the symmetry of the thermodynamic ground state and concluded that direct 180-degree switching of the DM vector by the ferroelectric polarization was forbidden10,11. Instead, we examined the kinetics of the switching process, something not considered previously in theoretical work10,11,12. Here we show a deterministic reversal of the DM vector and canted moment using an electric field at room temperature. First-principles calculations reveal that the switching kinetics favours a two-step switching process. In each step the DM vector and polarization are coupled and 180-degree deterministic switching of magnetization hence becomes possible, in agreement with experimental observation. We exploit this switching to demonstrate energy-efficient control of a spin-valve device at room temperature. The energy per unit area required is approximately an order of magnitude less than that needed for spin-transfer torque switching13,14. Given that the DM interaction is fundamental to single-phase multiferroics and magnetoelectrics3,9, our results suggest ways to engineer magnetoelectric switching and tailor technologically pertinent functionality for nanometre-scale, low-energy-consumption, non-volatile magnetoelectronics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & The renaissance of magnetoelectric multiferroics. Science 309, 391–392 (2005)

  2. 2.

    , & Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

  3. 3.

    Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005)

  4. 4.

    Room-temperature multiferroic magnetoelectrics. NPG Asia Mater. 5, e72 (2013)

  5. 5.

    et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

  6. 6.

    Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1262 (1957)

  7. 7.

    Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960)

  8. 8.

    & Multiferroics: a magnetic twist for ferroelectricity. Nature Mater. 6, 13–20 (2007)

  9. 9.

    & Role of Dzyaloshinskii-Moryia interaction in multiferroic perovskites. Phys. Rev. B 73, 094434 (2006)

  10. 10.

    & Electric-field switchable magnetization via the Dzyaloshiskii-Moriya interaction: FeTiO3 versus BiFeO3. J. Phys. Condens. Matter 20, 434219 (2008)

  11. 11.

    & Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite. Phys. Rev. B 71, 060401(R) (2005)

  12. 12.

    Ferroelectrically induced weak ferromagnetism by design. Phys. Rev. Lett. 100, 167203 (2008)

  13. 13.

    et al. Ultrafast switching in magnetic tunnel junction based orthogonal spin transfer devices. Appl. Phys. Lett. 97, 242510 (2010)

  14. 14.

    et al. Deep subnanosecond spin torque switching in magnetic tunnel junctions with combined in-plane and perpendicular polarizers. Appl. Phys. Lett. 98, 102509 (2011)

  15. 15.

    , , & Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res. 44, 91–116 (2014)

  16. 16.

    et al. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nature Commun. 4, 1534 (2013)

  17. 17.

    et al. Neutron powder diffraction study on the crystal and magnetic structures of BiCoO3. Chem. Mater. 18, 798 (2006)

  18. 18.

    et al. A polar corundum oxide displaying weak ferromagnetism at room temperature. J. Am. Chem. Soc. 134, 3737–3747 (2012)

  19. 19.

    et al. Room temperature multiferroic hexagonal LuFeO3 films. Phys. Rev. Lett. 110, 237601 (2013)

  20. 20.

    & Hybrid improper ferroelectricity: a mechanism for controllable polarization–magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011)

  21. 21.

    , , & Electric control of magnetization in BiFeO3/LaFeO3 superlattices. Phys. Rev. B 88, 060102(R) (2013)

  22. 22.

    , , & Prediction of a novel magnetoelectric switching mechanism in multiferroics. Phys. Rev. Lett. 112, 057202 (2014)

  23. 23.

    , , , & Electric field switching of the magnetic anisotropy of ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3. Phys. Rev. Lett. 103, 257601 (2009)

  24. 24.

    et al. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011)

  25. 25.

    et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

  26. 26.

    , & Magnetoelectric susceptibility and magnetic symmetry of magnetoelectrically annealed TbPO4. Phys. Rev. B 29, 4041–4048 (1984)

  27. 27.

    et al. Electric polarization reversal and memory in multiferroic material induced by magnetic fields. Nature 429, 392–395 (2004)

  28. 28.

    , , , & Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nature Mater. 6, 348–351 (2007)

  29. 29.

    et al. Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3 structure at room temperature. Phys. Rev. Lett. 108, 137203 (2012)

  30. 30.

    et al. Electric-field control of magnetic order above room temperature. Nature Mater. 13, 345–351 (2014)

  31. 31.

    et al. Nanoscale control of domain architectures in BiFeO3 thin films. Nano Lett. 9, 1726–1730 (2009)

  32. 32.

    , , & High speed SPM applied for direct nanoscale mapping of the influence of defects on ferroelectric switching dynamics. J. Am. Ceram. Soc. 95, 1147–1162 (2012)

  33. 33.

    et al. Mapping and statistics of ferroelectric domain boundary angles and types. Appl. Phys. Lett. 99, 162902 (2011)

  34. 34.

    & Efficient iterative schemes for ab initio total-energy calculations using a plane wave basis set. Phys. Rev. B 54, 11169 (1996)

  35. 35.

    et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

  36. 36.

    , , , & Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998)

  37. 37.

    Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

  38. 38.

    , , & First-principles predictions of low-energy phases of multiferroic BiFeO3. Phys. Rev. B 83, 094105 (2011)

  39. 39.

    , & Reversible work transition state theory: application to dissociative adsorption of hydrogen. Surf. Sci. 324, 305 (1995)

  40. 40.

    , , , & A generalized solid-state nudged elastic band method. J. Chem. Phys. 136, 074103 (2012)

  41. 41.

    et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nature Mater. 7, 478–482 (2008)

  42. 42.

    et al. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nature Mater. 5, 823–829 (2006)

  43. 43.

    et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nature Mater. 9, 309–314 (2010)

  44. 44.

    et al. Giant magnetostriction in annealed Co1 − xFex thin-films. Nature Commun. 2, 518 (2011)

  45. 45.

    et al. Electric control of magnetism at the Fe/BaTiO3 interface. Nature Commun. 5, 3404 (2014)

  46. 46.

    et al. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nature Nanotechnol. 4, 158–161 (2009)

  47. 47.

    , , & Electric-field-assisted switching in magnetic tunnel junctions. Nature Mater. 11, 64–68 (2011)

  48. 48.

    et al. Electric field-induced oxidation of ferromagnetic/ferroelectric interfaces. Adv. Funct. Mater. 24, 71 (2014)

  49. 49.

    et al. Fatigue and retention in ferroelectric Y-Ba-Cu-O/Pb-Zr-Ti-O/Y-Ba-Cu-O heterostructures. Appl. Phys. Lett. 61, 1537 (1992)

  50. 50.

    et al. Reversible electric control of exchange bias in a multiferroic field-effect device. Nature Mater. 9, 756–761 (2010)

  51. 51.

    et al. Interface ferromagnetism and orbital reconstruction in heterostructures. Phys. Rev. Lett. 105, 027201 (2010)

  52. 52.

    & Magnetoelectronics with magnetoelectrics. J. Phys. Condens. Matter 17, L39–L44 (2005)

  53. 53.

    , , & Spintronics with multiferroics. J. Phys. Condens. Matter 20, 434221 (2008)

  54. 54.

    et al. Spin-torque switching with the giant spin Hall effect of Ta. Science 336, 555 (2012)

  55. 55.

    et al. Low voltage performance of epitaxial BiFeO3 films on Si substrates through La substitution. Appl. Phys. Lett. 92, 102909 (2008)

  56. 56.

    et al. Interfacial coupling in multiferroic/ferromagnet heterostructures. Phys. Rev. B 87, 134426 (2013)

Download references

Acknowledgements

This work was supported by the National Science Foundation (Nanosystems Engineering Research Center for Translational Applications of Nanoscale Multiferroic Systems) under grant number EEC-1160504 and the DOD-ARO MURI supported by the Army Research Office through agreement number W911NF-08-2-0032 and partially by the FENA-FAME and NSF/MRSEC (DMR-1120296), through the Cornell Center for Materials Research, programs. J.I. acknowledges financial support from MINECO-Spain (grant numbers MAT2010-18113 and CSD2007-00041). J.L.B., L.Y. and B.D.H. acknowledge support from the DOE ESPM (grant number DE-SC0005037). The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract number DE-AC02-05CH11231. We thank C. Fennie for discussions, C. Zollner for the figure edits, and H. Nair, G. Stiehl and N. Dawley for their comments on the manuscript.

Author information

Affiliations

  1. Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, USA

    • J. T. Heron
    •  & D. G. Schlom
  2. Department of Materials Science and Engineering, University of Connecticut, Storrs, Connecticut 06269, USA

    • J. L. Bosse
    • , L. Ye
    •  & B. D. Huey
  3. Department of Physics, Durham University, Durham DH1 3LE, UK

    • Q. He
  4. Department of Physics, University of California, Berkeley, California 94720, USA

    • Y. Gao
    • , Jian Liu
    •  & R. Ramesh
  5. School of Materials Science and Engineering, and State Key Lab of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China

    • Y. Gao
  6. Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 4 10, 8093 Zurich, Switzerland

    • M. Trassin
  7. Department of Materials Science and Engineering, University of California, Berkeley, California 94720, USA

    • J. D. Clarkson
    •  & R. Ramesh
  8. Department of Physics, Cornell University, Ithaca, New York 14853, USA

    • C. Wang
    •  & D. C. Ralph
  9. Department of Electrical Engineering and Computer Science, University of California, Berkeley, California 94720, USA

    • S. Salahuddin
  10. Kavli Institute at Cornell for Nanoscale Science, Ithaca, New York 14853, USA

    • D. C. Ralph
    •  & D. G. Schlom
  11. Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain

    • J. Íñiguez
  12. Institute of Materials Science, University of Connecticut, Storrs, Connecticut 06269, USA

    • B. D. Huey
  13. Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

    • R. Ramesh

Authors

  1. Search for J. T. Heron in:

  2. Search for J. L. Bosse in:

  3. Search for Q. He in:

  4. Search for Y. Gao in:

  5. Search for M. Trassin in:

  6. Search for L. Ye in:

  7. Search for J. D. Clarkson in:

  8. Search for C. Wang in:

  9. Search for Jian Liu in:

  10. Search for S. Salahuddin in:

  11. Search for D. C. Ralph in:

  12. Search for D. G. Schlom in:

  13. Search for J. Íñiguez in:

  14. Search for B. D. Huey in:

  15. Search for R. Ramesh in:

Contributions

J.T.H. designed and, with M.T., D.C.R., D.G.S. and R.R., directed the study, analysed results, and wrote the manuscript. J.L.B. and L.Y. performed the time-dependent PFM measurements. J.L.B. and B.D.H. analysed the results. Q.H. and J.L. performed the XMCD measurements and provided analysis. Y.G. and M.T. grew the BiFeO3/SrRuO3 bilayers. J.D.C. aided in device fabrication. C.W. aided in the measurement and analysis of the spin-valve devices. J.I. performed the ab initio calculations. S.S. evaluated the transport results. J.T.H., M.T., C.W., S.S., D.C.R., D.G.S., J.I., B.D.H. and R.R. all made contributions to writing the manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to J. T. Heron.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature14004

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.