Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide

Abstract

Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets1, ferroelectrics2 and superconductors3. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities4,5. In addition, these materials often contain ferroelastic domains6. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves7, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material’s properties8,9. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films10, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and spintronics.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Atomic-resolution domain structure of strained TbMnO3.
Figure 2: Structure and chemistry of the domain walls.
Figure 3: Magnetic behaviour of the strained TbMnO3 films.
Figure 4: Crystal structure of the new 2D phase.
Figure 5: Simulated magnetic order of the new 2D phase.

References

  1. Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466, 954–958 (2010)

    ADS  CAS  PubMed  Google Scholar 

  2. Haeni, J. H. et al. Room-temperature ferroelectricity in strained SrTiO3 . Nature 430, 758–761 (2004)

    ADS  CAS  PubMed  Google Scholar 

  3. Llordés, A. et al. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nature Mater. 11, 329–336 (2012)

    ADS  Google Scholar 

  4. Wang, J. et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    ADS  CAS  PubMed  Google Scholar 

  5. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004)

    ADS  CAS  PubMed  Google Scholar 

  6. Salje, E. K. H. Ferroelastic materials. Annu. Rev. Mater. Res. 42, 265–283 (2012)

    ADS  CAS  Google Scholar 

  7. Daraktchiev, M., Catalan, G. & Scott, J. F. Landau theory of ferroelectric domain walls in magnetoelectrics. Ferroelectrics 375, 122–131 (2008)

    CAS  Google Scholar 

  8. Catalan, G. et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nature Mater. 10, 963–967 (2011)

    ADS  CAS  Google Scholar 

  9. Lee, D. et al. Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107, 057602 (2011)

    ADS  CAS  PubMed  Google Scholar 

  10. Venkatesan, S., Daumont, D., Kooi, B. J., Noheda, B. & De Hosson, J. T. M. Nanoscale domain evolution in thin films of multiferroic TbMnO3 . Phys. Rev. B 80, 214111 (2009)

    ADS  Google Scholar 

  11. Zubko, P., Gariglio, S., Gabay, M., Ghosez, P. & Triscone, J. M. Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141–165 (2011)

    ADS  CAS  Google Scholar 

  12. Catalan, G., Seidel, J., Ramesh, R. & Scott, J. F. Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012)

    ADS  CAS  Google Scholar 

  13. Salje, E. K. H. Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 11, 940–950 (2010)

    CAS  PubMed  Google Scholar 

  14. Seidel, J. et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009)

    ADS  CAS  Google Scholar 

  15. Farokhipoor, S. & Noheda, B. Conduction through 71° domain walls in BiFeO3 . Phys. Rev. Lett. 107, 127601 (2011)

    ADS  CAS  PubMed  Google Scholar 

  16. Rubi, D. et al. Ferromagnetism and increased ionicity in epitaxially grown TbMnO3 films. Phys. Rev. B 79, 014416 (2009)

    ADS  Google Scholar 

  17. Daumont, C. J. M. et al. Epitaxial TbMnO3 thin films on SrTiO3 substrates: a structural study. J. Phys. Condens. Matter 21, 182001 (2009)

    ADS  CAS  PubMed  Google Scholar 

  18. Marti, X. et al. Emergence of ferromagnetism in antiferromagnetic TbMnO3 by epitaxial strain. Appl. Phys. Lett. 96, 222505 (2010)

    ADS  Google Scholar 

  19. Roitburd, A. L. Equilibrium structure of epitaxial layers. Phys. Status Solidi A 37, 329–339 (1976)

    ADS  Google Scholar 

  20. Tagantsev, A. K., Cross, L. E. & Fousek, J. Domains in Ferroic Crystals and Thin Films 567–596 (Springer, 2010)

    Google Scholar 

  21. Hÿtch, M. J., Snoeck, E. & Kilaas, R. Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998)

    Google Scholar 

  22. Mochizuki, M. & Furukawa, N. Microscopic model and phase diagrams of the multiferroic perovskite manganites. Phys. Rev. B 80, 134416 (2009)

    ADS  Google Scholar 

  23. Cui, Y., Wang, C. & Cao, B. TbMnO3 epitaxial thin films by pulsed-laser deposition. Solid State Commun. 133, 641–645 (2005)

    ADS  CAS  Google Scholar 

  24. Kirby, B. J. et al. Anomalous ferromagnetism in TbMnO3 thin films. J. Appl. Phys. 105, 07D917 (2009)

    Google Scholar 

  25. Marti, X. et al. Strain-driven noncollinear magnetic ordering in orthorhombic epitaxial YMnO3 thin films. J. Appl. Phys. 108, 123917 (2010)

    ADS  Google Scholar 

  26. White, J. S. et al. Strain-induced ferromagnetism in antiferromagnetic LuMnO3 thin films. Phys. Rev. Lett. 111, 037201 (2013)

    ADS  CAS  PubMed  Google Scholar 

  27. Goto, T., Kimura, T., Lawes, G., Ramirez, A. P. & Tokura, Y. Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 92, 257201 (2004)

    ADS  CAS  PubMed  Google Scholar 

  28. Jiménez-Villacorta, F., Gallastegui, J. A., Fina, I., Marti, X. & Fontcuberta, J. Strain-driven transition from E-type to A-type magnetic order in YMnO3 epitaxial films. Phys. Rev. B 86, 024420 (2012)

    ADS  Google Scholar 

  29. Alonso, J. A., Martinez-Lope, M. J., Casais, M. T. & Fernandez-Diaz, M. T. Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. Inorg. Chem. 39, 917–923 (2000)

    CAS  PubMed  Google Scholar 

  30. Kimura, T. et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

    ADS  CAS  PubMed  Google Scholar 

  31. Mostovoy, M. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006)

    ADS  PubMed  Google Scholar 

  32. Daumont, C. J. M. et al. Tuning the atomic and domain structure of epitaxial films of multiferroic BiFeO3 . Phys. Rev. B 81, 144115 (2010)

    ADS  Google Scholar 

  33. Watanabe, M., Okunishi, E. & Ishizuka, K. Analysis of spectrum-imaging datasets in atomic-resolution electron microscopy. Microscopy Anal. 23, 5–7 (2009)

    Google Scholar 

  34. Varela, M. et al. Atomic-resolution imaging of oxidation states in manganites. Phys. Rev. B 79, 085117 (2009)

    ADS  Google Scholar 

  35. Schmid, H. K. & Mader, W. Oxidation states of Mn and Fe in various compound oxide systems. Micron 37, 426–432 (2006)

    CAS  PubMed  Google Scholar 

  36. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

    ADS  CAS  Google Scholar 

  37. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    ADS  CAS  Google Scholar 

  38. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    ADS  PubMed  Google Scholar 

  39. Liechtenstein, A. I., Anisimov, V. I. & Zaane, J. Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467 (1995)

    ADS  CAS  Google Scholar 

  40. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

    ADS  Google Scholar 

  41. Barandiarán, Z. & Seijo, L. The ab initio model potential representation of the crystalline environment. Theoretical study of the local distortion in NaCl:Cu+. J. Chem. Phys. 89, 5739 (1988)

    ADS  Google Scholar 

  42. Malrieu, J.-P., Caballol, R., Calzado, C. J., de Graaf, C. & Guihery, N. Magnetic interactions in molecules and highly correlated materials: physical content, analytical derivation, and rigorous extraction of magnetic Hamiltonians. Chem. Rev. 114, 429–492 (2014)

    CAS  PubMed  Google Scholar 

  43. Andersson, K. K. Malmqvist, P.-Å. & Roos, B. O. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96, 1218–1226 (1992)

    ADS  CAS  Google Scholar 

  44. Aquilante, F. et al. MOLCAS 7: the next generation. J. Comput. Chem. 31, 224–247 (2010)

    CAS  PubMed  Google Scholar 

  45. Roos, B. O., Lindh, R., Malmqvist, P.-Å., Veryazov, V. & Widmark, P.-O. New relativistic ANO basis sets for transition metal atoms. J. Phys. Chem. A 109, 6575–6579 (2005)

    CAS  PubMed  Google Scholar 

  46. de Graaf, C., Sousa, C., de, P. R., Moreira, I. & Illas, F. Multiconfigurational perturbation theory, an efficient tool to predict magnetic coupling parameters in biradicals, molecular complexes and ionic insulators. J. Phys. Chem. A 105, 11371–11378 (2001)

    CAS  Google Scholar 

  47. Moussa, F. et al. Spin waves in the antiferromagnet perovskite LaMnO3: a neutron-scattering study. Phys. Rev. B 54, 15149 (1996)

    ADS  CAS  Google Scholar 

  48. Albright, T. A., Burdett, J. K. & Whangbo, M.-H. Orbital Interactions in Chemistry 295–298, 304–309 (Wiley, 1985).

  49. Henkel, G., Greiwe, K. & Krebs, B. [Mn(S2C6H3Me)2]n−: mononuclear manganese complexes with square-planar (n = 1) and distorted tetrahedral (n = 2) sulphur coordination. Angew. Chem. Int. Edn Engl. 24, 117 (1985)

    Google Scholar 

  50. Morris, R. J. & Girolami, G. S. Isolation and characterization of the first σ-organomanganese(III) complex. Crystal and molecular structure of (2,4,6-trimethylphenyl)dibromobis(trimethylphosphine)manganese(III). Polyhedron 7, 2001 (1988)

    CAS  Google Scholar 

  51. Sellers, S. P., Korte, B. J., Fitzgerald, J. P., Reiff, W. M. & Yee, G. T. Canted ferromagnetism and other magnetic phenomena in square-planar, neutral manganese(II) and iron(II) octaethyltetraazaporphyrins. J. Am. Chem. Soc. 120, 4662 (1998)

    CAS  Google Scholar 

  52. Salavati-Niasari, M. & Babazadeh-Arani, H. Cyclohexene oxidation with tert-butylhydroperoxide and hydrogen peroxide catalyzed by new square-planar manganese(II), cobalt(II), nickel(II) and copper(II) bis(2-mercaptoanil)benzil complexes supported on alumina. J. Mol. Catal. Chem. 274, 58 (2007)

    CAS  Google Scholar 

  53. Glazer, A. M. The classification of tilted octahedra in perovskites. Acta Crystallogr. B28, 3384–3392 (1972)

    Google Scholar 

  54. Johnston, K. E. et al. The polar phase of NaNbO3: a combined study by powder diffraction, solid-state NMR, and first-principles calculations. J. Am. Chem. Soc. 132, 8732 (2010)

    CAS  PubMed  Google Scholar 

  55. Prosandeev, S., Wang, D., Ren, W., Iñiguez, J. & Bellaiche, L. Novel nanoscale twinned phases in perovskite oxides. Adv. Funct. Mater. 23, 234 (2013)

    CAS  Google Scholar 

  56. Wang, D., Salje, E. K. H., Mi, S.-B., Jia, C.-L. & Bellaiche, L. Multidomains made of different structural phases in multiferroic BiFeO3: a first-principles-based study. Phys. Rev. B 88, 134107 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

We are grateful to B. Kooi, T. Palstra, J. Fontcuberta, E. Canadell and the members of the Leverhulme Trust network ‘International Network on Nanoscale Ferroelectrics’, in particular J. F. Scott and F. Morrison, for discussions. This work is supported by NanoNextNL, a micro- and nanotechnology consortium of the Government of the Netherlands and 130 partners. It is also part of the research program NWO-Nano and is funded by the Foundation for Fundamental Research on Matter (FOM), which is financially supported by the Netherlands Organization for Scientific Research (NWO). C.M. and E.S. acknowledge the Laboratorio de Microscopias Avanzadas at Instituto de Nanociencia de Aragon, Universidad de Zaragoza, where the aberration-corrected TEM studies were conducted, and the support of the European Union under the Seventh Framework Programme under a contract for an Integrated Infrastructure Initiative Reference 312483-ESTEEM2. C.d.G. obtained financial support from the Spanish Administration (project CTQ2011-23140) and the Generalitat de Catalunya (project 2009SGR462). J.I. received financial support from MINECO-Spain (grants nos MAT2010-18113 and CSD2007-00041). D.R. is a fellow of CONICET. S.V., A.M., M.D. and C.S. acknowledge financial support from the German Science Foundation (DFG) via the Cluster of Excellence NIM. We made used of the facilities provided by the CESGA supercomputing centre.

Author information

Authors and Affiliations

Authors

Contributions

C.J.M.D. and B.N. initiated the work. S.F. and C.J.M.D. grew the films and performed the structural and magnetic characterization. D.R. helped with the magnetic analysis. C.M. and E.S. performed the TEM measurements reported here. S.V., A.M., M.D. and C.S. performed preliminary TEM measurements and analysis that led to the discovery of the novel 2D phase. J.I. performed the density functional theory calculations. C.d.G. performed the embedded cluster calculations. M.M. simulated the magnetic structure. B.N., C.M., S.F., J.I. and M.M. wrote the paper. B.N. coordinated the activities. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to C. Magén or B. Noheda.

Extended data figures and tables

Extended Data Figure 1 AFM and XRD characterization of the films.

a, AFM images of the topography of TbMnO3 films with three different thicknesses, showing flat surfaces and the presence of the substrate steps up to a thickness of 85 nm (film thickness is denoted in the left lower corner). b, XRD reciprocal-space maps around the substrate (103) reflection for four different thicknesses. The structural characterization of the films confirms the twin-domain configuration, constant out-of-plane lattice parameter and partial coherence with the substrate of the films used in this study, in agreement with those reported in ref. 17. The axes represent the components of the scattering wavevectors parallel (Kpar) and perpendicular (Kperp) to the film surface in units of 2Ko = 4π/λ, where λ is the X-ray wavelength.

Extended Data Figure 2 Reference EELS at the O K edge.

Electron energy loss spectrum at the O K edge of crushed powder extracted from the TbMnO3 target used to grow the sample studied in this work. This image includes the two Gaussian fits used to estimate the Mn oxidation state.

Extended Data Figure 3 Domain wall EELS at the O K edge.

Local determination of the Mn oxidation state from a spectrum image obtained around a TbMnO3 domain wall following the analysis of the O K edge previously described. a, Simultaneously acquired HAADF signal. b, Mn oxidation state map. c, O K edges obtained by integrating spectra in the upper domain (orange), in the domain wall (green) and in the lower domain (red).

Extended Data Figure 4 Domain wall EELS at the Mn L2,3 edge.

Map of the fine structure of the Mn L2,3 edge around a TbMnO3 domain wall, obtained from the spectrum image analysed in Extended Data Fig. 3. a, Simultaneously acquired HAADF signal. b, Energy difference between the maxima of the L3 and L2 peaks. c, Mn L2,3 edges obtained by integrating spectra in the upper domain (blue), in the domain wall (red) and in the lower domain (green).

Extended Data Figure 5 Substrate magnetic contribution.

The M–H loop corresponding to the bare SrTiO3 substrate is added to the curves in Fig. 3c, for direct comparison.

Extended Data Figure 6 Out-of-plane magnetization.

Out-of-plane magnetic M–H curves for the samples shown in Fig. 3b. The contribution of the substrate has been subtracted.

Extended Data Figure 7 Inverse susceptibility.

Inverse magnetic susceptibility of a 55 nm film showing deviation downwards from the Curie–Weiss law, which is indicative of the onset of a net magnetic moment below 45–50 K.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Farokhipoor, S., Magén, C., Venkatesan, S. et al. Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide. Nature 515, 379–383 (2014). https://doi.org/10.1038/nature13918

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13918

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing