Letter | Published:

Artificial chemical and magnetic structure at the domain walls of an epitaxial oxide

Nature volume 515, pages 379383 (20 November 2014) | Download Citation

Abstract

Progress in nanotechnology requires new approaches to materials synthesis that make it possible to control material functionality down to the smallest scales. An objective of materials research is to achieve enhanced control over the physical properties of materials such as ferromagnets1, ferroelectrics2 and superconductors3. In this context, complex oxides and inorganic perovskites are attractive because slight adjustments of their atomic structures can produce large physical responses and result in multiple functionalities4,5. In addition, these materials often contain ferroelastic domains6. The intrinsic symmetry breaking that takes place at the domain walls can induce properties absent from the domains themselves7, such as magnetic or ferroelectric order and other functionalities, as well as coupling between them. Moreover, large domain wall densities create intense strain gradients, which can also affect the material’s properties8,9. Here we show that, owing to large local stresses, domain walls can promote the formation of unusual phases. In this sense, the domain walls can function as nanoscale chemical reactors. We synthesize a two-dimensional ferromagnetic phase at the domain walls of the orthorhombic perovskite terbium manganite (TbMnO3), which was grown in thin layers under epitaxial strain on strontium titanate (SrTiO3) substrates. This phase is yet to be created by standard chemical routes. The density of the two-dimensional sheets can be tuned by changing the film thickness or the substrate lattice parameter (that is, the epitaxial strain), and the distance between sheets can be made as small as 5 nanometres in ultrathin films10, such that the new phase at domain walls represents up to 25 per cent of the film volume. The general concept of using domain walls of epitaxial oxides to promote the formation of unusual phases may be applicable to other materials systems, thus giving access to new classes of nanoscale materials for applications in nanoelectronics and spintronics.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466, 954–958 (2010)

  2. 2.

    et al. Room-temperature ferroelectricity in strained SrTiO3. Nature 430, 758–761 (2004)

  3. 3.

    et al. Nanoscale strain-induced pair suppression as a vortex-pinning mechanism in high-temperature superconductors. Nature Mater. 11, 329–336 (2012)

  4. 4.

    et al. Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

  5. 5.

    et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004)

  6. 6.

    Ferroelastic materials. Annu. Rev. Mater. Res. 42, 265–283 (2012)

  7. 7.

    , & Landau theory of ferroelectric domain walls in magnetoelectrics. Ferroelectrics 375, 122–131 (2008)

  8. 8.

    et al. Flexoelectric rotation of polarization in ferroelectric thin films. Nature Mater. 10, 963–967 (2011)

  9. 9.

    et al. Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107, 057602 (2011)

  10. 10.

    , , , & Nanoscale domain evolution in thin films of multiferroic TbMnO3. Phys. Rev. B 80, 214111 (2009)

  11. 11.

    , , , & Interface physics in complex oxide heterostructures. Annu. Rev. Condens. Matter Phys. 2, 141–165 (2011)

  12. 12.

    , , & Domain wall nanoelectronics. Rev. Mod. Phys. 84, 119–156 (2012)

  13. 13.

    Multiferroic domain boundaries as active memory devices: trajectories towards domain boundary engineering. ChemPhysChem 11, 940–950 (2010)

  14. 14.

    et al. Conduction at domain walls in oxide multiferroics. Nature Mater. 8, 229–234 (2009)

  15. 15.

    & Conduction through 71° domain walls in BiFeO3. Phys. Rev. Lett. 107, 127601 (2011)

  16. 16.

    et al. Ferromagnetism and increased ionicity in epitaxially grown TbMnO3 films. Phys. Rev. B 79, 014416 (2009)

  17. 17.

    et al. Epitaxial TbMnO3 thin films on SrTiO3 substrates: a structural study. J. Phys. Condens. Matter 21, 182001 (2009)

  18. 18.

    et al. Emergence of ferromagnetism in antiferromagnetic TbMnO3 by epitaxial strain. Appl. Phys. Lett. 96, 222505 (2010)

  19. 19.

    Equilibrium structure of epitaxial layers. Phys. Status Solidi A 37, 329–339 (1976)

  20. 20.

    , & Domains in Ferroic Crystals and Thin Films 567–596 (Springer, 2010)

  21. 21.

    , & Quantitative measurement of displacement and strain fields from HREM micrographs. Ultramicroscopy 74, 131–146 (1998)

  22. 22.

    & Microscopic model and phase diagrams of the multiferroic perovskite manganites. Phys. Rev. B 80, 134416 (2009)

  23. 23.

    , & TbMnO3 epitaxial thin films by pulsed-laser deposition. Solid State Commun. 133, 641–645 (2005)

  24. 24.

    et al. Anomalous ferromagnetism in TbMnO3 thin films. J. Appl. Phys. 105, 07D917 (2009)

  25. 25.

    et al. Strain-driven noncollinear magnetic ordering in orthorhombic epitaxial YMnO3 thin films. J. Appl. Phys. 108, 123917 (2010)

  26. 26.

    et al. Strain-induced ferromagnetism in antiferromagnetic LuMnO3 thin films. Phys. Rev. Lett. 111, 037201 (2013)

  27. 27.

    , , , & Ferroelectricity and giant magnetocapacitance in perovskite rare-earth manganites. Phys. Rev. Lett. 92, 257201 (2004)

  28. 28.

    , , , & Strain-driven transition from E-type to A-type magnetic order in YMnO3 epitaxial films. Phys. Rev. B 86, 024420 (2012)

  29. 29.

    , , & Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. Inorg. Chem. 39, 917–923 (2000)

  30. 30.

    et al. Magnetic control of ferroelectric polarization. Nature 426, 55–58 (2003)

  31. 31.

    Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96, 067601 (2006)

  32. 32.

    et al. Tuning the atomic and domain structure of epitaxial films of multiferroic BiFeO3. Phys. Rev. B 81, 144115 (2010)

  33. 33.

    , & Analysis of spectrum-imaging datasets in atomic-resolution electron microscopy. Microscopy Anal. 23, 5–7 (2009)

  34. 34.

    et al. Atomic-resolution imaging of oxidation states in manganites. Phys. Rev. B 79, 085117 (2009)

  35. 35.

    & Oxidation states of Mn and Fe in various compound oxide systems. Micron 37, 426–432 (2006)

  36. 36.

    & Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)

  37. 37.

    & From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

  38. 38.

    et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

  39. 39.

    , & Density-functional theory and strong interactions: orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 52, R5467 (1995)

  40. 40.

    Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)

  41. 41.

    & The ab initio model potential representation of the crystalline environment. Theoretical study of the local distortion in NaCl:Cu+. J. Chem. Phys. 89, 5739 (1988)

  42. 42.

    , , , & Magnetic interactions in molecules and highly correlated materials: physical content, analytical derivation, and rigorous extraction of magnetic Hamiltonians. Chem. Rev. 114, 429–492 (2014)

  43. 43.

    Malmqvist, P.-Å. & Roos, B. O. Second-order perturbation theory with a complete active space self-consistent field reference function. J. Chem. Phys. 96, 1218–1226 (1992)

  44. 44.

    et al. MOLCAS 7: the next generation. J. Comput. Chem. 31, 224–247 (2010)

  45. 45.

    , , , & New relativistic ANO basis sets for transition metal atoms. J. Phys. Chem. A 109, 6575–6579 (2005)

  46. 46.

    , , , & Multiconfigurational perturbation theory, an efficient tool to predict magnetic coupling parameters in biradicals, molecular complexes and ionic insulators. J. Phys. Chem. A 105, 11371–11378 (2001)

  47. 47.

    et al. Spin waves in the antiferromagnet perovskite LaMnO3: a neutron-scattering study. Phys. Rev. B 54, 15149 (1996)

  48. 48.

    , & Orbital Interactions in Chemistry 295–298, 304–309 (Wiley, 1985).

  49. 49.

    , & [Mn(S2C6H3Me)2]n−: mononuclear manganese complexes with square-planar (n = 1) and distorted tetrahedral (n = 2) sulphur coordination. Angew. Chem. Int. Edn Engl. 24, 117 (1985)

  50. 50.

    & Isolation and characterization of the first σ-organomanganese(III) complex. Crystal and molecular structure of (2,4,6-trimethylphenyl)dibromobis(trimethylphosphine)manganese(III). Polyhedron 7, 2001 (1988)

  51. 51.

    , , , & Canted ferromagnetism and other magnetic phenomena in square-planar, neutral manganese(II) and iron(II) octaethyltetraazaporphyrins. J. Am. Chem. Soc. 120, 4662 (1998)

  52. 52.

    & Cyclohexene oxidation with tert-butylhydroperoxide and hydrogen peroxide catalyzed by new square-planar manganese(II), cobalt(II), nickel(II) and copper(II) bis(2-mercaptoanil)benzil complexes supported on alumina. J. Mol. Catal. Chem. 274, 58 (2007)

  53. 53.

    The classification of tilted octahedra in perovskites. Acta Crystallogr. B28, 3384–3392 (1972)

  54. 54.

    et al. The polar phase of NaNbO3: a combined study by powder diffraction, solid-state NMR, and first-principles calculations. J. Am. Chem. Soc. 132, 8732 (2010)

  55. 55.

    , , , & Novel nanoscale twinned phases in perovskite oxides. Adv. Funct. Mater. 23, 234 (2013)

  56. 56.

    , , , & Multidomains made of different structural phases in multiferroic BiFeO3: a first-principles-based study. Phys. Rev. B 88, 134107 (2013)

Download references

Acknowledgements

We are grateful to B. Kooi, T. Palstra, J. Fontcuberta, E. Canadell and the members of the Leverhulme Trust network ‘International Network on Nanoscale Ferroelectrics’, in particular J. F. Scott and F. Morrison, for discussions. This work is supported by NanoNextNL, a micro- and nanotechnology consortium of the Government of the Netherlands and 130 partners. It is also part of the research program NWO-Nano and is funded by the Foundation for Fundamental Research on Matter (FOM), which is financially supported by the Netherlands Organization for Scientific Research (NWO). C.M. and E.S. acknowledge the Laboratorio de Microscopias Avanzadas at Instituto de Nanociencia de Aragon, Universidad de Zaragoza, where the aberration-corrected TEM studies were conducted, and the support of the European Union under the Seventh Framework Programme under a contract for an Integrated Infrastructure Initiative Reference 312483-ESTEEM2. C.d.G. obtained financial support from the Spanish Administration (project CTQ2011-23140) and the Generalitat de Catalunya (project 2009SGR462). J.I. received financial support from MINECO-Spain (grants nos MAT2010-18113 and CSD2007-00041). D.R. is a fellow of CONICET. S.V., A.M., M.D. and C.S. acknowledge financial support from the German Science Foundation (DFG) via the Cluster of Excellence NIM. We made used of the facilities provided by the CESGA supercomputing centre.

Author information

Author notes

    • S. Farokhipoor
    •  & C. Magén

    These authors contributed equally to this work.

    • S. Venkatesan
    • , C. J. M. Daumont
    • , D. Rubi
    • , A. Müller
    •  & C. Scheu

    Present addresses: Max-Planck-Institut für Eisenforschung GmbH, 40237 Düsseldorf, Germany (S.V., A.M., C.S.); Groupe de Recherche en Matériaux, Microélectronique, Acoustique et Nanotechnologies (GREMAN, UMR7347), University of Tours, 37020 Tours, France (C.J.M.D.); Gerencia de Investigaciòn y Aplicaciones and Instituto de Nanociencias y Nanotecnologìa, CAC-CNEA, 1650 San Martín, Argentina (D.R.).

Affiliations

  1. Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands

    • S. Farokhipoor
    • , C. J. M. Daumont
    • , D. Rubi
    • , M. Mostovoy
    • , C. de Graaf
    •  & B. Noheda
  2. Laboratorio de Microscopías Avanzadas (LMA), Instituto de Nanociencia de Aragón (INA) - ARAID, and Departamento de Física de la Materia Condensada, Universidad de Zaragoza, 50018 Zaragoza, Spain

    • C. Magén
  3. Transpyrenean Advanced Laboratory for Electron Microscopy (TALEM), CEMES - INA, CNRS - Universidad de Zaragoza, 30155 Toulouse, France

    • C. Magén
    •  & E. Snoeck
  4. Department of Chemistry and CeNS, Ludwig-Maximilians-Universität München, Butenandtstrasse 5-11 (E), 81377 Munich, Germany

    • S. Venkatesan
    • , A. Müller
    • , M. Döblinger
    •  & C. Scheu
  5. Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain

    • J. Íñiguez
  6. CEMES - CNRS, 30155 Toulouse, France

    • E. Snoeck
  7. Universitat Rovira i Virgili, 43007 Tarragona, Spain

    • C. de Graaf
  8. Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain

    • C. de Graaf

Authors

  1. Search for S. Farokhipoor in:

  2. Search for C. Magén in:

  3. Search for S. Venkatesan in:

  4. Search for J. Íñiguez in:

  5. Search for C. J. M. Daumont in:

  6. Search for D. Rubi in:

  7. Search for E. Snoeck in:

  8. Search for M. Mostovoy in:

  9. Search for C. de Graaf in:

  10. Search for A. Müller in:

  11. Search for M. Döblinger in:

  12. Search for C. Scheu in:

  13. Search for B. Noheda in:

Contributions

C.J.M.D. and B.N. initiated the work. S.F. and C.J.M.D. grew the films and performed the structural and magnetic characterization. D.R. helped with the magnetic analysis. C.M. and E.S. performed the TEM measurements reported here. S.V., A.M., M.D. and C.S. performed preliminary TEM measurements and analysis that led to the discovery of the novel 2D phase. J.I. performed the density functional theory calculations. C.d.G. performed the embedded cluster calculations. M.M. simulated the magnetic structure. B.N., C.M., S.F., J.I. and M.M. wrote the paper. B.N. coordinated the activities. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to C. Magén or B. Noheda.

Extended data

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature13918

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.