Limited impact on decadal-scale climate change from increased use of natural gas


The most important energy development of the past decade has been the wide deployment of hydraulic fracturing technologies that enable the production of previously uneconomic shale gas resources in North America1. If these advanced gas production technologies were to be deployed globally, the energy market could see a large influx of economically competitive unconventional gas resources2. The climate implications of such abundant natural gas have been hotly debated. Some researchers have observed that abundant natural gas substituting for coal could reduce carbon dioxide (CO2) emissions3,4,5,6. Others have reported that the non-CO2 greenhouse gas emissions associated with shale gas production make its lifecycle emissions higher than those of coal7,8. Assessment of the full impact of abundant gas on climate change requires an integrated approach to the global energy–economy–climate systems, but the literature has been limited in either its geographic scope9,10 or its coverage of greenhouse gases2. Here we show that market-driven increases in global supplies of unconventional natural gas do not discernibly reduce the trajectory of greenhouse gas emissions or climate forcing. Our results, based on simulations from five state-of-the-art integrated assessment models11 of energy–economy–climate systems independently forced by an abundant gas scenario, project large additional natural gas consumption of up to +170 per cent by 2050. The impact on CO2 emissions, however, is found to be much smaller (from −2 per cent to +11 per cent), and a majority of the models reported a small increase in climate forcing (from −0.3 per cent to +7 per cent) associated with the increased use of abundant gas. Our results show that although market penetration of globally abundant gas may substantially change the future energy system, it is not necessarily an effective substitute for climate change mitigation policy9,10.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Global natural gas supply curves in 2050.
Figure 2: Comparison of the model results 2010-2050.
Figure 3: Global energy consumption and radiative forcing in 2050.


  1. 1

    Sovacool, B. K. Cornucopia or curse? Reviewing the costs and benefits of shale gas hydraulic fracturing (fracking). Renew. Sustain. Energy Rev. 37, 249–264 (2014)

    Article  Google Scholar 

  2. 2

    International Energy Agency. Are We Entering a Golden Age of Gas? (IEA Report, 2011)

  3. 3

    Hultman, N., Rebois, D., Scholten, M. & Ramig, C. The greenhouse impact of unconventional gas for electricity generation. Environ. Res. Lett. 6, 044008 (2011)

    ADS  Article  CAS  Google Scholar 

  4. 4

    Moniz, E. J. et al. The Future of Natural Gas: An Interdisciplinary MIT Study (MIT, 2011);

  5. 5

    Brown, S., Krupnick, A. & Walls, M. Natural Gas: a Bridge to a Low-Carbon Future (Resource for the Future, 2009);

  6. 6

    Levi, M. Climate consequences of natural gas as a bridge fuel. Clim. Change 118, 609–623 (2013)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Howarth, R. W., Santoro, R. & Ingraffea, A. Methane and the greenhouse-gas footprint of natural gas from shale formations. Clim. Change 106, 679–690 (2011)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Howarth, R. W., Ingraffea, A. & Engelder, T. Natural gas: should fracking stop? Nature 477, 271–275 (2011)

    ADS  CAS  PubMed  Article  Google Scholar 

  9. 9

    Newell, R. G. & Raimi, D. Implications of shale gas development for climate change. Environ. Sci. Technol. 48, 8360–8368 (2014)

    ADS  CAS  PubMed  Article  Google Scholar 

  10. 10

    Energy Modeling Forum. Changing the game? Emissions and Market Implications of New Natural Gas Supplies EMF Report 26 (EMF, 2013);

  11. 11

    Edmonds, J. A. et al. in Climate Change Modeling Methodology 169–209 (Springer, 2012)

  12. 12

    Rogner, H. et al. in Global Energy Assessment 423–512 (Cambridge Univ. Press, 2012)

  13. 13

    Mi, R. & Fisher, B. S. BAEGEM Model Documentation (BAEconomics, 2014);

  14. 14

    Calvin, K. et al. GCAM Wiki Documentation (Pacific Northwest National Laboratory, 2011);

  15. 15

    Riahi, K., Grübler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. Change 74, 887–935 (2007)

    Article  Google Scholar 

  16. 16

    Bauer, N. et al. Global fossil energy markets and climate change mitigation—an analysis with REMIND. Clim. Change (in the press)

  17. 17

    Bosetti, V., Carraro, C., Galeotti, M., Massetti, E. & Tavoni, M. A world induced technical change hybrid model. Energy J. 27, 13–37 (2006)

    Google Scholar 

  18. 18

    Van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011)

    ADS  Article  Google Scholar 

  19. 19

    Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013)

  20. 20

    Bauer, N. et al. CO2 emission mitigation and fossil fuel markets: dynamic and international aspects of climate policies. Technol. Forecast. Soc. Change (in the press)

  21. 21

    Intergovernmental Panel on Climate Change IPCC Guidelines for National Greenhouse Gas Inventories (IPCC report, 2006);

  22. 22

    Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6: Part I—model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Environmental Protection Agency Inventory of Greenhouse Gas Emissions and Sinks 1990–2009 (EPA Publication 430-R-11–005, 2011);

  24. 24

    Venkatesh, A., Jaramillo, P., Griffin, W. M. & Matthews, H. S. Uncertainty in life cycle greenhouse gas emissions from United States natural gas end-uses and its effects on policy. Environ. Sci. Technol. 45, 8182–8189 (2011)

    ADS  CAS  PubMed  Article  Google Scholar 

  25. 25

    Burnham, A. et al. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum. Environ. Sci. Technol. 46, 619–627 (2012)

    ADS  CAS  PubMed  Article  Google Scholar 

  26. 26

    Laurenzi, I. J. & Jersey, G. R. Life cycle greenhouse gas emissions and freshwater consumption of Marcellus shale gas. Environ. Sci. Technol. 47, 4896–4903 (2013)

    ADS  CAS  PubMed  Article  Google Scholar 

  27. 27

    Miller, S. M. et al. Anthropogenic emissions of methane in the United States. Proc. Natl Acad. Sci. USA 110, 20018–20022 (2013)

    ADS  CAS  PubMed  Article  Google Scholar 

  28. 28

    Brandt, A. et al. Methane leaks from North American natural gas systems. Science 343, 733–735 (2014)

    ADS  CAS  PubMed  Article  Google Scholar 

  29. 29

    Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim. Change 123, 353–367 (2014)

    ADS  Article  Google Scholar 

  30. 30

    Calvin, K. et al. The role of Asia in mitigating climate change: results from the Asia modeling exercise. Energy Econ. 34, S251–S260 (2012)

    Article  Google Scholar 

  31. 31

    Riahi, K. et al. Locked into Copenhagen pledges—implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change (in the press)

  32. 32

    Nordhaus, W. D. & Boyer, J. G. Requiem for Kyoto: an economic analysis of the Kyoto Protocol. Energy J. 20, 93–130 (1999)

    Article  Google Scholar 

  33. 33

    Skone, T. J. Life Cycle Analysis: Natural Gas Combined Cycle (NGCC) Power Plant (National Energy Technology Laboratory, 2010);

  34. 34

    McCollum, D., Bauer, N., Calvin, K., Kitous, A. & Riahi, K. Fossil resource and energy security dynamics in conventional and carbon-constrained worlds. Clim. Change 123, 413–426 (2014)

    ADS  Article  Google Scholar 

  35. 35

    Messner, S. & Strubegger, M. User’s Guide for MESSAGE III (International Institute for Applied Systems Analysis, 1995)

    Google Scholar 

  36. 36

    Luderer, G., Leimbach, M., Bauer, N. & Kriegler, E. Description of the ReMIND-R model. (Potsdam Institute for Climate Impact Research, 2011);

  37. 37

    Integrated Assessment Modeling Consortium IPCC AR5 Scenario Database (IAMC, 2014);

  38. 38

    Reilly, J. M., Edmonds, J. A., Gardner, R. H. & Brenkert, A. L. Uncertainty analysis of the IEA/ORAU CO2 emissions model. Energy J. 8, 1–29 (1987)

    Article  Google Scholar 

  39. 39

    Scott, M. J., Sands, R. D., Edmonds, J., Liebetrau, A. M. & Engel, D. W. Uncertainty in integrated assessment models: modeling with MiniCAM 1.0. Energy Policy 27, 855–879 (1999)

    Article  Google Scholar 

  40. 40

    Meehl, G., Covey, C., McAvaney, B., Latif, M. & Stouffer, R. Overview of the coupled model intercomparison project (CMIP). Bull. Am. Meteorol. Soc. 86, 89–93 (2005)

    ADS  Article  Google Scholar 

  41. 41

    Hertel, T. W. & Hertel, T. W. Global Trade Analysis: Modeling and Applications (Cambridge Univ. Press, 1999)

    Google Scholar 

  42. 42

    Hanoch, G. CRESH production functions. Econometrica 39, 695–712 (1971)

    MathSciNet  MATH  Article  Google Scholar 

  43. 43

    Harrison, J., Horridge, J., Jerie, M. & Pearson, K. GEMPACK Manual (2012);

  44. 44

    Aguiar, A., McDougall, R. & Narayanan, B. Global Trade, Assistance and Production: The GTAP 8 Data Base (Center for Global Trade Analysis, Purdue Univ., 2012)

    Google Scholar 

  45. 45

    International Energy Agency. CO 2 Emissions from Fuel Combustion 2012 (Organisation for Economic Cooperation and Development, 2012)

  46. 46

    International Energy Agency. Emissions of CO 2 , CH 4 , N 2 O, HFCs, PFCs and SF 6 (Organisation for Economic Cooperation and Development, 2012)

  47. 47

    United Nations Framework Convention on Climate Change. 2012 Annex I Party GHG Inventory Submissions (UNFCCC, 2012)

  48. 48

    Environmental Protection Agency. Global Anthropogenic Non-CO 2 Greenhouse Gas Emissions: 1990-2030 (US Environmental Protection Agency, 2012)

  49. 49

    Wigley, T. M. MAGICC/SCENGEN 5.3: User Manual Version 2 (NCAR, 2008)

    Google Scholar 

  50. 50

    International Energy Agency. CO 2 Emissions from Fuel Combustion 1971–2001 (Organisation for Economic Cooperation and Development, 2012)

  51. 51

    Weyant, J. P., de la Chesnaye, F. C. & Blanford, G. J. Overview of EMF-21: multigas mitigation and climate policy. Energy J. 27, 1–32 (2006)

    Google Scholar 

  52. 52

    Edmonds, J. & Reilly, J. Global energy production and use to the year 2050. Energy 8, 419–432 (1983)

    Article  Google Scholar 

  53. 53

    Edmonds, J. & Reilly, J. Global energy and CO2 to the year 2050. Energy J. 4, 21–47 (1983)

    Article  Google Scholar 

  54. 54

    Edmonds, J. & Reilly, J. A long-term global energy-economic model of carbon dioxide release from fossil fuel use. Energy Econ. 5, 74–88 (1983)

    Article  Google Scholar 

  55. 55

    Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009)

    ADS  CAS  PubMed  Article  Google Scholar 

  56. 56

    Thomson, A. M. et al. RCP4.5: a pathway for stabilization of radiative forcing by 2100. Clim. Change 109, 77–94 (2011)

    ADS  CAS  Article  Google Scholar 

  57. 57

    Clarke, J. F. & Edmonds, J. A. Modelling energy technologies in a competitive market. Energy Econ. 15, 123–129 (1993)

    Article  Google Scholar 

  58. 58

    Boden, T. A., Marland, G. & Andres, R. J. Global, Regional, and National Fossil-Fuel CO2 Emissions (Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, 2009)

    Google Scholar 

  59. 59

    International Energy Agency. Energy Balances of OECD Countries (Organisation for Economic Cooperation and Development, 2013)

  60. 60

    International Energy Agency. Energy Balances of Non-OECD Countries (Organisation for Economic Cooperation and Development, 2013)

  61. 61

    Lamarque, J.-F. et al. Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos. Chem. Phys. 10, 7017–7039 (2010)

    ADS  CAS  Article  Google Scholar 

  62. 62

    Messner, S. & Schrattenholzer, L. MESSAGE–MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy 25, 267–282 (2000)

    Article  Google Scholar 

  63. 63

    Rao, S. & Riahi, K. The role of non-CO2 greenhouse gases in climate change mitigation: long-term scenarios for the 21st century. Energy J. 27, 177–200 (2006)

    Google Scholar 

  64. 64

    Manne, A., Mendelsohn, R. & Richels, R. MERGE: a model for evaluating regional and global effects of GHG reduction policies. Energy Policy 23, 17–34 (1995)

    Article  Google Scholar 

  65. 65

    Wigley, T. & Raper, S. Implications for climate and sea level of revised IPCC emissions scenarios. Nature 357, 293–300 (1992)

    ADS  CAS  Article  Google Scholar 

  66. 66

    Arthur, W. B. Competing technologies, increasing returns, and lock-in by historical events. Econ. J. 99, 116–131 (1989)

    Article  Google Scholar 

  67. 67

    O’Neill, B. C., Riahi, K. & Keppo, I. Mitigation implications of midcentury targets that preserve long-term climate policy options. Proc. Natl Acad. Sci. USA 107, 1011–1016 (2010)

    ADS  PubMed  Article  CAS  Google Scholar 

  68. 68

    Riahi, K. et al. Energy pathways for sustainable development. In Global Energy Assessment 1203–1306 (Cambridge Univ. Press, 2012)

  69. 69

    International Energy Agency. World Energy Outlook 2008 (International Energy Agency, 2008)

  70. 70

    Riahi, K., Rubin, E. S. & Schrattenholzer, L. Prospects for carbon capture and sequestration technologies assuming their technological learning. Energy 29, 1309–1318 (2004)

    CAS  Article  Google Scholar 

  71. 71

    Ramage, M. & Katzer, J. Liquid Transportation Fuels from Coal and Biomass: Technological Status, Costs, and Environmental Impacts (National Academies Press, 2009)

    Google Scholar 

  72. 72

    Liu, G., Larson, E. D., Williams, R. H., Kreutz, T. G. & Guo, X. Making Fischer−Tropsch fuels and electricity from coal and biomass: performance and cost analysis. Energy Fuels 25, 415–437 (2011)

    CAS  Article  Google Scholar 

  73. 73

    Liu, G., Williams, R. H., Larson, E. D. & Kreutz, T. G. Design/economics of low-carbon power generation from natural gas and biomass with synthetic fuels co-production. Energy Procedia 4, 1989–1996 (2011)

    Article  Google Scholar 

  74. 74

    Global Energy Assessment GEA Scenario Database (2012);

  75. 75

    Rogner, H.-H. An assessment of world hydrocarbon resources. Annu. Rev. Energy Environ. 22, 217–262 (1997)

    Article  Google Scholar 

  76. 76

    Patwardhan, A. P., Gomez-Echeverri, L., Johansson, T. B. & Nakićenović, N. Global Energy Assessment: Toward a Sustainable Future (Cambridge Univ. Press, 2012)

    Google Scholar 

  77. 77

    Weber, C. L. & Clavin, C. Life cycle carbon footprint of shale gas: review of evidence and implications. Environ. Sci. Technol. 46, 5688–5695 (2012)

    ADS  CAS  PubMed  Article  Google Scholar 

  78. 78

    Rao, S. & Riahi, K. The role of non-CO2 greenhouse gases in climate change mitigation: long-term scenarios for the 21st century. Energy J. 27, 177–200 (2006)

    Google Scholar 

  79. 79

    Intergovernmental Panel on Climate Change. Guidance and Uncertainty Management in National Greenhouse Gas Inventories 2000 (IPCC Report, 2000)

  80. 80

    Nordhaus, W. D. & Yang, Z. A regional dynamic general-equilibrium model of alternative climate-change strategies. Am. Econ. Rev. 86, 741–765 (1996)

    Google Scholar 

  81. 81

    Leimbach, M., Bauer, N., Baumstark, L., Luken, M. & Edenhofer, O. Technological change and international trade-insights from REMIND-R. Energy J. 31, 109–136 (2010)

    Article  Google Scholar 

  82. 82

    Bauer, N., Brecha, R. J. & Luderer, G. Economics of nuclear power and climate change mitigation policies. Proc. Natl Acad. Sci. USA 109, 16805–16810 (2012)

    ADS  CAS  PubMed  Article  Google Scholar 

  83. 83

    Luderer, G. et al. The economics of decarbonizing the energy system—results and insights from the RECIPE model intercomparison. Clim. Change 114, 9–37 (2012)

    ADS  Article  Google Scholar 

  84. 84

    Edenhofer, O. et al. The economics of low stabilization: model comparison of mitigation strategies and costs. Energy J. 31, 11–48 (2010)

    Google Scholar 

  85. 85

    Kriegler, E. et al. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Clim. Change 123, 353–367 (2014)

    ADS  Article  Google Scholar 

  86. 86

    Bauer, N., Edenhofer, O. & Kypreos, S. Linking energy system and macroeconomic growth models. Comput. Manage. Sci. 5, 95–117 (2008)

    MathSciNet  MATH  Article  Google Scholar 

  87. 87

    Schwanitz, V. J., Piontek, F., Bertram, C. & Luderer, G. Long-term climate policy implications of phasing out fossil fuel subsidies. Energy Policy 67, 882–894 (2014)

    Article  Google Scholar 

  88. 88

    Klein, D. et al. The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE. Clim. Change 123, 705–718 (2013)

    ADS  Article  Google Scholar 

  89. 89

    Strefler, J., Luderer, G., Aboumahboub, T. & Kriegler, E. Economic impacts of alternative greenhouse gas emission metrics: a model-based assessment. Clim. Change (in the press)

  90. 90

    International Institute for Applied Systems Analysis Global Biosphere Management Model (IIASA, 2014);

  91. 91

    Bosetti, V., Carraro, C., Massetti, E. & Tavoni, M. International energy R&D spillovers and the economics of greenhouse gas atmospheric stabilization. Energy Econ. 30, 2912–2929 (2008)

    Article  Google Scholar 

  92. 92

    Bosetti, V., Carraro, C., Duval, R. & Tavoni, M. What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D. Energy Econ. 33, 1313–1320 (2011)

    Article  Google Scholar 

  93. 93

    Wigley, T. M. & Raper, S. Thermal expansion of sea water associated with global warming. Nature 330, 127–131 (1987)

    ADS  Article  Google Scholar 

  94. 94

    Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006)

    ADS  Article  Google Scholar 

  95. 95

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010)

    ADS  CAS  PubMed  Article  Google Scholar 

  96. 96

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011)

    ADS  CAS  Article  Google Scholar 

  97. 97

    Joos, F. et al. Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Glob. Biogeochem. Cycles 15, 891–907 (2001)

    ADS  CAS  Article  Google Scholar 

  98. 98

    Wigley, T., Smith, S. J. & Prather, M. Radiative forcing due to reactive gas emissions. J. Clim. 15, 2690–2696 (2002)

    ADS  Article  Google Scholar 

Download references


B.F. and R.M. and their development of BAEGEM were supported by BAEconomics with assistance for special applications to the resource sector from Rio Tinto (Australia). H.M., L.C., J.E. and B.P.F. were supported by the Global Technology Strategy Project. V.K., K.R. and H.R. were supported by the International Institute for Applied Systems Analysis cross-cutting project on unconventional natural gas. N.B. and J.H. were supported by funding from the German Federal Ministry of Education and Research in the project ‘Economics of Climate Change’. G.M. and M.T. were supported by the Italian Ministry of Education, University and Research and the Italian Ministry of Environment, Land and Sea under the GEMINA project. We thank M. Jeong and E. Golman for research assistance. The views and opinions expressed in this paper are those of the authors alone.

Author information




H.M., J.E., L.C. and B.P.F. proposed the research design. H.R. provided the resource supply curves. H.M. and J.E. provided GCAM data and wrote the first draft of the paper. N.B. and J.H. provided REMIND data. B.F. and R.M. provided BAEGEM data. V.K. and K.R. provided MESSAGE data. G.M. and M.T. provided WITCH data. All authors contributed to writing the paper.

Corresponding author

Correspondence to Haewon McJeon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Radiative forcing composition for high fugitive methane scenarios.

a, Year 2010 and year 2050 composition of radiative forcing for the Conventional Gas scenario with high fugitive methane for five models. b, Year 2050 relative difference in radiative forcing (the Abundant Gas scenario minus the Conventional Gas scenario) all with high fugitive methane assumption for the five models. 1% difference in forcing for model average is equivalent to 0.044 W m−2. Source data

Extended Data Figure 2 Global natural gas supply curves.

The current natural gas supply curves provided by Global Energy Assessment12. Future cost reduction assumptions are documented in the Methods. Source data

Extended Data Figure 3 Natural gas supply curve sensitivity analysis.

a, Global natural gas consumption. b, CO2 emissions from fossil fuels. c, Total radiative forcing. d, Global mean surface temperature change (from pre-industrial average 1750–1849). Conventional Gas and Abundant Gas denote the quantity of natural gas supply. The decimal numbers denote the fraction of cost reduction over 2010–2050. Source data

Extended Data Figure 4 Uncertainty ranges in principal components of model projections.

a, Global population. b, Global GDP. c, Total primary energy consumption. d, Fossil fuel and industrial CO2 emissions. Coloured lines are model reported values from this study. Shaded areas are ranges of projections found in the literature obtained from the IPCC AR5 database37. Source data

Extended Data Table 1 Cost reduction in low-carbon energy technologies over 2010–2050 in the Abundant Gas scenario
Extended Data Table 2 CO2 emissions in 2050 from fossil fuels and industry with standard energy market assumptions and with the coal-substitution-only assumption
Extended Data Table 3 2050 emission factors for fossil fuels in each model
Extended Data Table 4 2050 anthropogenic radiative forcing with standard fugitive methane emission assumptions and with high fugitive methane emission assumptions

Related audio

Researchers Jae Edmunds and Haewon McJeon on the impacts of natural gas on climate change.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-5, Supplementary Tables 1-10 and Supplementary References. (PDF 688 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McJeon, H., Edmonds, J., Bauer, N. et al. Limited impact on decadal-scale climate change from increased use of natural gas. Nature 514, 482–485 (2014).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.