Abstract

We present the high-quality genome sequence of a 45,000-year-old modern human male from Siberia. This individual derives from a population that lived before—or simultaneously with—the separation of the populations in western and eastern Eurasia and carries a similar amount of Neanderthal ancestry as present-day Eurasians. However, the genomic segments of Neanderthal ancestry are substantially longer than those observed in present-day individuals, indicating that Neanderthal gene flow into the ancestors of this individual occurred 7,000–13,000 years before he lived. We estimate an autosomal mutation rate of 0.4 × 10−9 to 0.6 × 10−9 per site per year, a Y chromosomal mutation rate of 0.7 × 10−9 to 0.9 × 10−9 per site per year based on the additional substitutions that have occurred in present-day non-Africans compared to this genome, and a mitochondrial mutation rate of 1.8 × 10−8 to 3.2 × 10−8 per site per year based on the age of the bone.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Accessions

Primary accessions

European Nucleotide Archive

Data deposits

All sequence data have been submitted to the European Nucleotide Archive (ENA) and are available under the following Ust’-Ishim accession number: PRJEB6622. The data from the 25 present-day human genomes are available from (http://www.simonsfoundation.org/life-sciences/simons-genome-diversity-project/) and from (http://cdna.eva.mpg.de/neandertal/altai/).

References

  1. 1.

    & Diaphyseal cross-sectional geometry of Near Eastern Middle Paleolithic humans: the femur. J. Archaeol. Sci. 26, 409–424 (1999)

  2. 2.

    et al. Reliability of nitrogen content (%N) and carbon:nitrogen atomic ratios (C:N) as indicators of collagen preservation suitable for radiocarbon dating. Radiocarbon 54, 879–886 (2012)

  3. 3.

    & Out of Africa: modern human origins special feature: isotopic evidence for the diets of European Neanderthals and early modern humans. Proc. Natl Acad. Sci. USA 106, 16034–16039 (2009)

  4. 4.

    et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012)

  5. 5.

    et al. A revised timescale for human evolution based on ancient mitochondrial genomes. Curr. Biol. 23, 553–559 (2013)

  6. 6.

    A nomenclature system for the tree of human Y-chromosomal binary haplogroups. Genome Res. 12, 339–348 (2002)

  7. 7.

    et al. A Bayesian phylogenetic method to estimate unknown sequence ages. Mol. Biol. Evol. 28, 879–887 (2011)

  8. 8.

    et al. Ancient admixture in human history. Genetics 192, 1065–1093 (2012)

  9. 9.

    et al. Derived immune and ancestral pigmentation alleles in a 7,000-year-old Mesolithic European. Nature 507, 225–228 (2014)

  10. 10.

    et al. Upper Palaeolithic Siberian genome reveals dual ancestry of Native Americans. Nature 505, 87–91 (2014)

  11. 11.

    et al. Ancient human genomes suggest three ancestral populations for present-day Europeans. Nature 513, 409–413 (2014)

  12. 12.

    et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014)

  13. 13.

    & Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011)

  14. 14.

    & Revising the human mutation rate: implications for understanding human evolution. Nature Rev. Genet. 13, 745–753 (2012)

  15. 15.

    et al. Rate of de novo mutations and the importance of father’s age to disease risk. Nature 488, 471–475 (2012)

  16. 16.

    et al. Generation times in wild chimpanzees and gorillas suggest earlier divergence times in great ape and human evolution. Proc. Natl Acad. Sci. USA 109, 15716–15721 (2012)

  17. 17.

    et al. The bonobo genome compared with the chimpanzee and human genomes. Nature 486, 527–531 (2012)

  18. 18.

    et al. Human Y chromosome base-substitution mutation rate measured by direct sequencing in a deep-rooting pedigree. Curr. Biol. 19, 1453–1457 (2009)

  19. 19.

    et al. Comparative analysis of chimpanzee and human Y chromosomes unveils complex evolutionary pathway. Nature Genet. 38, 158–167 (2006)

  20. 20.

    , , & Genome-wide single-cell analysis of recombination activity and de novo mutation rates in human sperm. Cell 150, 402–412 (2012)

  21. 21.

    , , , & The date of interbreeding between Neandertals and modern humans. PLoS Genet. 8, e1002947 (2012)

  22. 22.

    et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010)

  23. 23.

    et al. Denisova admixture and the first modern human dispersals into Southeast Asia and Oceania. Am. J. Hum. Genet. 89, 516–528 (2011)

  24. 24.

    & Archaic human ancestry in East Asia. Proc. Natl Acad. Sci. USA 108, 18301–18306 (2011)

  25. 25.

    Cross-cultural estimation of the human generation interval for use in genetics-based population divergence studies. Am. J. Phys. Anthropol. 128, 415–423 (2005)

  26. 26.

    & The Stone Age of Mount Carmel Vol. 2 (Clarendon, Oxford, 1939)

  27. 27.

    Les Hommes Fossiles de Qafzeh (Israel) 319 (Éditions du CNRS, 1981)

  28. 28.

    et al. An Aboriginal Australian genome reveals separate human dispersals into Asia. Science 334, 94–98 (2011)

  29. 29.

    The earliest modern human colonization of Europe. Proc. Natl Acad. Sci. USA 109, 13471–13472 (2012)

  30. 30.

    et al. The role of climate in the spread of modern humans into Europe. Quat. Sci. Rev. 30, 273–279 (2011)

  31. 31.

    , & Dating the Middle to Upper Paleolithic transition at Kara-Bom. Curr. Anthropol. 34, 452–458 (1993)

  32. 32.

    & Rethinking the initial Upper Paleolithic. Quat. Int. (2014)

  33. 33.

    , & Calibration for archaeological and environmental terrestrial samples in the time range 26–50 ka cal bp. Radiocarbon. 55, 2021–2027 (2013)

  34. 34.

    et al. IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 Years cal bp. Radiocarbon 55, 1869–1887 (2009)

  35. 35.

    , & Improved base calling for the Illumina Genome Analyzer using machine learning strategies. Genome Biol. 10, R83 (2009)

  36. 36.

    & Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009)

Download references

Acknowledgements

We are grateful to P. Gunz, M. Kircher, A. I. Krivoshapkin, P. Nigst, M. Ongyerth, N. Patterson, G. Renaud, U. Stenzel, M. Stoneking and S. Talamo for valuable input, comments and help; T. Pfisterer and H. Temming for technical assistance. Q.F. is funded in part by the Chinese Academy of Sciences (XDA05130202) and the Ministry of Science and Technology of China (2007FY110200); P.A.K. by Urals Branch, Russian Academy of Sciences (12-C-4-1014) and Y.V.K. by the Russian Foundation for Basic Sciences (12-06-00045); F.J. and M.S. by the National Institutes of Health of the USA (R01-GM40282); P.J. by the NIH (K99-GM104158); and T.F.G.H. by ERC advanced grant 324139. D.R. is a Howard Hughes Medical Institute Investigator and supported by the National Science Foundation (1032255) and the NIH (GM100233). Major funding for this work was provided by the Presidential Innovation Fund of the Max Planck Society.

Author information

Affiliations

  1. Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, IVPP, CAS, Beijing 100044, China

    • Qiaomei Fu
  2. Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany

    • Qiaomei Fu
    • , Ayinuer Aximu-Petri
    • , Kay Prüfer
    • , Cesare de Filippo
    • , Matthias Meyer
    • , Michael Lachmann
    • , Janet Kelso
    • , T. Bence Viola
    •  & Svante Pääbo
  3. Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA

    • Heng Li
    • , Priya Moorjani
    •  & David Reich
  4. Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA

    • Heng Li
    •  & David Reich
  5. Department of Biological Sciences, Columbia University, New York, New York 10027, USA

    • Priya Moorjani
  6. Department of Integrative Biology, University of California, Berkeley, California 94720-3140, USA

    • Flora Jay
    •  & Montgomery Slatkin
  7. Institute for Problems of the Development of the North, Siberian Branch of the Russian Academy of Sciences, Tyumen 625026, Russia

    • Sergey M. Slepchenko
    •  & Dmitry I. Razhev
  8. Expert Criminalistics Center, Omsk Division of the Ministry of Internal Affairs, Omsk 644007, Russia

    • Aleksei A. Bondarev
  9. Department of Biology, Emory University, Atlanta, Georgia 30322, USA

    • Philip L. F. Johnson
  10. Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany

    • Nicolas Zwyns
    • , Domingo C. Salazar-García
    • , Michael P. Richards
    • , Jean-Jacques Hublin
    •  & T. Bence Viola
  11. Department of Anthropology, University of California, Davis, California 95616, USA

    • Nicolas Zwyns
  12. Department of Archaeology, University of Cape Town, Cape Town 7701, South Africa

    • Domingo C. Salazar-García
  13. Departament de Prehistòria i Arqueologia, Universitat de València, Valencia 46010, Spain

    • Domingo C. Salazar-García
  14. Research Group on Plant Foods in Hominin Dietary Ecology, Max-Planck Institute for Evolutionary Anthropology, D-04103 Leipzig, Germany

    • Domingo C. Salazar-García
  15. Institute of Geology and Mineralogy, Siberian Branch of the Russian Academy of Sciences, Novosibirsk 630090, Russia

    • Yaroslav V. Kuzmin
    •  & Susan G. Keates
  16. Institute of Plant and Animal Ecology, Urals Branch of the Russian Academy of Sciences, Yekaterinburg 620144, Russia

    • Pavel A. Kosintsev
  17. Laboratory of Archaeology, Department of Anthropology, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada

    • Michael P. Richards
  18. Siberian Cultural Center, Omsk 644010, Russia

    • Nikolai V. Peristov
  19. Santa Fe Institute, Santa Fe, New Mexico 87501, USA

    • Michael Lachmann
  20. Oxford Radiocarbon Accelerator Unit, Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford OX1 3QY, UK

    • Katerina Douka
    •  & Thomas F. G. Higham
  21. Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA

    • David Reich

Authors

  1. Search for Qiaomei Fu in:

  2. Search for Heng Li in:

  3. Search for Priya Moorjani in:

  4. Search for Flora Jay in:

  5. Search for Sergey M. Slepchenko in:

  6. Search for Aleksei A. Bondarev in:

  7. Search for Philip L. F. Johnson in:

  8. Search for Ayinuer Aximu-Petri in:

  9. Search for Kay Prüfer in:

  10. Search for Cesare de Filippo in:

  11. Search for Matthias Meyer in:

  12. Search for Nicolas Zwyns in:

  13. Search for Domingo C. Salazar-García in:

  14. Search for Yaroslav V. Kuzmin in:

  15. Search for Susan G. Keates in:

  16. Search for Pavel A. Kosintsev in:

  17. Search for Dmitry I. Razhev in:

  18. Search for Michael P. Richards in:

  19. Search for Nikolai V. Peristov in:

  20. Search for Michael Lachmann in:

  21. Search for Katerina Douka in:

  22. Search for Thomas F. G. Higham in:

  23. Search for Montgomery Slatkin in:

  24. Search for Jean-Jacques Hublin in:

  25. Search for David Reich in:

  26. Search for Janet Kelso in:

  27. Search for T. Bence Viola in:

  28. Search for Svante Pääbo in:

Contributions

Q.F., S.M.S., A.A.B., Y.V.K., J.K., T.B.V. and S.P. designed the research. A.A.P. and Q.F. performed the experiments; Q.F., H.L., P.M., F.J., P.L.F.J., K.P., C.d.F., M.M., M.L., M.S., D.R., J.K. and S.P. analysed genetic data; K.D. and T.F.G.H. performed 14C dating; D.C.S.-G. and M.P.R. analysed stable isotope data; N.V.P., P.A.K. and D.I.R. contributed samples and data; S.M.S., A.A.B., N.Z., Y.V.K., S.G.K., J.-J.H. and T.B.V. analysed archaeological and anthropological data; Q.F., J.K., T.B.V. and S.P. wrote and edited the manuscript with input from all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Qiaomei Fu or David Reich or Janet Kelso or T. Bence Viola.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    This file contains Supplementary Information Sections 1-18 – see Supplementary Contents for details

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature13810

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.