Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highlights in the study of exoplanet atmospheres

Abstract

Exoplanets are now being discovered in profusion. To understand their character, however, we require spectral models and data. These elements of remote sensing can yield temperatures, compositions and even weather patterns, but only if significant improvements in both the parameter retrieval process and measurements are made. Despite heroic efforts to garner constraining data on exoplanet atmospheres and dynamics, reliable interpretation has frequently lagged behind ambition. I summarize the most productive, and at times novel, methods used to probe exoplanet atmospheres; highlight some of the most interesting results obtained; and suggest various broad theoretical topics in which further work could pay significant dividends.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Transit spectrum of giant exoplanet HD 189733b.
Figure 2: The transmission spectrum of GJ 1214b.
Figure 3: Transit depth spectrum of the hot Jupiter HD 209458b.
Figure 4: The measured light curve of υ Andromedae b.
Figure 5: Surface map of brown dwarf Luhman 16B.

References

  1. 1

    Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995). This discovery paper inaugurated the modern era of exoplanet research.

    ADS  CAS  Google Scholar 

  2. 2

    Charbonneau, D., Brown, T., Latham, D. W. & Mayor, M. Detection of planetary transits across a Sun-like star. Astrophys. J. 529, L45–L48 (2000).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Borucki, W. J. et al. Kepler planet-detection mission: introduction and first results. Science 327, 977–980 (2010).

    ADS  CAS  Google Scholar 

  4. 4

    Moutou, C. et al. CoRoT: Harvest of the exoplanet program. Icarus 226, 1625–1634 (2013).

    ADS  Google Scholar 

  5. 5

    Burrows, A. S. Spectra as windows into exoplanet atmospheres. Proc. Natl Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1304208111 (2014) This paper provides an unvarnished appraisal of current state-of-the-art exoplanet atmosphere characterization.

  6. 6

    Brown, T. Transmission spectra as diagnostics of extrasolar giant planet atmospheres. Astrophys. J. 553, 1006–1026 (2001).

    ADS  CAS  Google Scholar 

  7. 7

    Seager, S. & Sasselov, D. D. Theoretical transmission spectra during extrasolar giant planet transits. Astrophys. J. 537, 916–921 (2000).

    ADS  CAS  Google Scholar 

  8. 8

    Fortney, J. J. et al. On the indirect detection of sodium in the atmosphere of the transiting planet HD209458b. Astrophys. J. 589, 615–622 (2003).

    ADS  CAS  Google Scholar 

  9. 9

    Werner, M. W. et al. The Spitzer Space Telescope mission. Astrophys. J. 154 (Suppl.), 1–9 (2004).

    ADS  Google Scholar 

  10. 10

    Macintosh, B. et al. The Gemini Planet Imager: from science to design to construction. Proc. SPIE 7015, 701518 (2008).

    Google Scholar 

  11. 11

    Beuzit, J.-L. et al. SPHERE: a planet finder instrument for the VLT. Proc. SPIE 7014, 701418 (2008).

    Google Scholar 

  12. 12

    Suzuki, R. et al. Performance characterization of the HiCIAO instrument for the Subaru Telescope. Proc. SPIE 7735, 773530 (2010).

    Google Scholar 

  13. 13

    Spergel, D. N. et al. Wide-field infrared survey telescope – astrophysics focused telescope assets WFIRST-AFTA final report. Preprint at http://arxiv.org/abs/1305.5422 (2013).

  14. 14

    Madhusudhan, N., Knutson, H., Fortney, J. J. & Barman, T. Exoplanetary atmospheres. Preprint at http://arXiv.org/abs/1402.1169 (2014).

  15. 15

    Burrows, A. & Orton, G. in Exoplanets (ed. Seager, S.) 419–440 (Univ. Arizona Press, 2010).

    Google Scholar 

  16. 16

    Fletcher, L. N. et al. Exploring the diversity of Jupiter-class planets. Phil. Trans. R. Soc. A 372, 20130064 (2014).

    ADS  Google Scholar 

  17. 17

    Tinetti, G. Galactic planetary science. Preprint at http://arXiv.org/abs/1402.1085 (2014).

  18. 18

    Tinetti, G. et al. in Proc. Inter. Astronom. Union IAU Symposium 6 (S276) 359–370 (2011).

    Google Scholar 

  19. 19

    Guillot, T. On the radiative equilibrium of irradiated planetary atmospheres. Astron. Astrophys. 520, A27–A39 (2010).

    ADS  MATH  Google Scholar 

  20. 20

    Burrows, A., Hubbard, W. B. & Lunine, J. I. The theory of brown dwarfs and extrasolar giant planets. Rev. Mod. Phys. 73, 719–765 (2001).

    ADS  CAS  Google Scholar 

  21. 21

    Burrows, A. et al. A nongray theory of extrasolar giant planets and brown dwarfs. Astrophys. J. 491, 856–875 (1997).

    ADS  CAS  Google Scholar 

  22. 22

    Deming, D. et al. Discovery and characterization of transiting super Earths using an all-sky transit survey and follow-up by the James Webb Space Telescope. Publ. Astron. Soc. Pac. 121, 952–967 (2009).

    ADS  Google Scholar 

  23. 23

    Rothman, L. S. et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 110, 533–572 (2009).

    ADS  CAS  Google Scholar 

  24. 24

    Tennyson, J. & Yurchenko, S. N. The status of spectroscopic data for the exoplanet characterisation missions. Preprint at http://arXiv.org/abs/1401.4212 (2014).

  25. 25

    Hill, C., Yurchenko, S. N. & Tennyson, J. Temperature-dependent molecular absorption cross sections for exoplanets and other atmospheres. Icarus 226, 1673–1677 (2013).

    ADS  CAS  Google Scholar 

  26. 26

    Freedman, R. S., Marley, M. S. & Lodders, K. Line and mean opacities for ultracool dwarfs and extrasolar planets. Astrophys. J. 174 (Suppl.), 504–513 (2008).

    ADS  CAS  Google Scholar 

  27. 27

    Sharp, C. M. & Burrows, A. Atomic and molecular opacities for brown dwarf and giant planet atmospheres. Astrophys. J. 168 (Suppl.), 140–166 (2007).

    ADS  CAS  Google Scholar 

  28. 28

    Lodders, K. Solar System abundances and condensation temperatures of the elements. Astrophys. J. 591, 1220–1247 (2003).

    ADS  CAS  Google Scholar 

  29. 29

    Lodders, K. & Fegley, B. Atmospheric chemistry in giant planets, brown dwarfs, and low-mass dwarf stars. I. Carbon, nitrogen, and oxygen. Icarus 155, 393–424 (2002).

    ADS  CAS  Google Scholar 

  30. 30

    Lodders, K. & Fegley, B. The Planetary Scientist's Companion (Oxford Univ. Press, 1998).

    Google Scholar 

  31. 31

    Burrows, A. & Sharp, C. Chemical equilibrium abundances in brown dwarf and extrasolar giant planet atmospheres. Astrophys. J. 512, 843–863 (1999).

    ADS  CAS  Google Scholar 

  32. 32

    Schaefer, L. & Fegley, B. Chemistry of silicate atmospheres of evaporating super-Earths. Astrophys. J. 703, L113–L117 (2009).

    ADS  CAS  Google Scholar 

  33. 33

    Lecavelier des Etangs, A., Pont, F., Vidal-Madjar, A. & Sing, D. Rayleigh scattering in the transit spectrum of HD 189733b. Astron. Astrophys. 481, L83–L86 (2008).

    ADS  CAS  Google Scholar 

  34. 34

    Charbonneau, D., Brown, T., Noyes, R. W. & Gilliland, R. L. Detection of an extrasolar planet atmosphere. Astrophys. J. 568, 377–384 (2002). This paper announced the first ever detection of a specific chemical species (sodium) in an exoplanet atmosphere.

    ADS  CAS  Google Scholar 

  35. 35

    Sing, D. K. et al. Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey: detection of potassium in XO-2b from narrowband spectrophotometry. Astron. Astrophys. 527, 10 (2011).

    Google Scholar 

  36. 36

    Pont, F. et al. The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations. Mon. Not. R. Astron. Soc. 432, 2917–2944 (2013). This paper is the most definitive study at primary transit pointing to the potential centrality of obscuring hazes in an exoplanet atmosphere.

    ADS  Google Scholar 

  37. 37

    Pont, F., Knutson, H. A., Gilliland, R. L. M. & Charbonneau D. Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μ transmission spectrum of HD 189733b with the Hubble Space Telescope. Mon. Not. R. Astron. Soc. 385, 109–118 (2008).

    ADS  CAS  Google Scholar 

  38. 38

    Burrows, A., Marley, M. M. & Sharp, C. M. The near-infrared and optical spectra of methane dwarfs and brown dwarfs. Astrophys. J. 531, 438–446 (2000).

    ADS  CAS  Google Scholar 

  39. 39

    Grillmair, C. J. et al. Strong water absorption in the dayside emission spectrum of the planet HD189733b. Nature 456, 767–769 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Howe, A. & Burrows, A. Theoretical transit spectra for GJ 1214b and other 'super-Earths'. Astrophys. J. 756, 176–189 (2012).

    ADS  Google Scholar 

  41. 41

    Kreidberg, L. et al. Clouds in the atmosphere of the super-Earth exoplanet GJ1214b. Nature 505, 69–72 (2014).

    ADS  Google Scholar 

  42. 42

    Deming, D. et al. Infrared transmission spectroscopy of the exoplanets HD 209458b and XO-1b using the Wide-Field Camera-3 on the Hubble Space Telescope. Astrophys. J. 774, 95–112 (2013).

    ADS  Google Scholar 

  43. 43

    Marley, M. S., Ackerman, A. S., Cuzzi, J. N. & Kitzmann, D. in Comparative Climatology of Terrestrial Planets (eds Mackwell, S., Bullock, M. & Harder, J.) 367–391 (Univ. Arizona Press, 2013).

    Google Scholar 

  44. 44

    Showman, A. P. et al. Atmospheric circulation of hot Jupiters: coupled radiative-dynamical general circulation model simulations of HD 189733b and HD 209458b. Astrophys. J. 699, 564–584 (2009).

    ADS  CAS  Google Scholar 

  45. 45

    Deming, D., Seager, S., Richardson, L. J. & Harrington, J. Infrared radiation from an extrasolar planet. Nature 434, 740–743 (2005). This paper was the first to demonstrate the potential of the Spitzer Space Telescope to measure the light of an exoplanet during secondary eclipse.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Charbonneau, D. et al. Detection of thermal emission from an extrasolar planet. Astrophys. J. 626, 523–529 (2005).

    ADS  CAS  Google Scholar 

  47. 47

    Burrows, A., Hubeny, I. & Sudarsky, D. A theoretical interpretation of the measurements of the secondary eclipses of TrES-1 and HD 209458b. Astrophys. J. 625, L135–L138 (2005).

    ADS  CAS  Google Scholar 

  48. 48

    Burrows, A. & Lunine, J. Astronomical questions of origins and survival. Nature 378, 333 (1995).

    ADS  CAS  Google Scholar 

  49. 49

    Vidal-Madjar, A. et al. An extended upper atmosphere around the extrasolar planet HD209458b. Nature 422, 143–146 (2003). This paper was the first to discover signatures of winds emanating from exoplanets.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Lecavelier Des Etangs, A. et al. Evaporation of the planet HD 189733b observed in H I Lyman-á. Astrophys. Astron. 514, 10 (2010)

    Google Scholar 

  51. 51

    Fossati, L. et al. Metals in the exosphere of the highly irradiated planet WASP-12b. Astrophys. J. 714, L222–L227 (2010).

    ADS  CAS  Google Scholar 

  52. 52

    Kulow, J. R., France, K., Linsky, J. & Parke Loyd, R. O. Lyman-α transit spectroscopy and the neutral hydrogen tail of the hot Neptune GJ 436b. Preprint at http://arXiv.org/abs/1403.6834 (2014).

  53. 53

    Ehrenreich, D. & Désert, J.-M. Mass-loss rates for transiting exoplanets. Astron. Astrophys. 529, A136 (2011).

    ADS  Google Scholar 

  54. 54

    Linsky, J. L. et al. Observations of mass loss from the transiting exoplanet HD 209458b. Astrophys. J. 717, 1291–1299 (2010).

    ADS  CAS  Google Scholar 

  55. 55

    Marley, M. S., Gelino, C., Stephens, D., Lunine, J. I. & Freedman, R. Reflected spectra and albedos of extrasolar giant planets. I. Clear and cloudy atmospheres. Astrophys. J. 513, 879–893 (1999).

    ADS  CAS  Google Scholar 

  56. 56

    Sudarsky, D., Burrows, A. & Pinto, P. Albedo and reflection spectra of extrasolar giant planets. Astrophys. J. 538, 885–903 (2000). This paper provides a comprehensive theory of the reflection and albedo spectra of giant exoplanets as a function of orbital distance and planet mass.

    ADS  CAS  Google Scholar 

  57. 57

    Burrows, A., Sudarsky, D. & Hubeny, I. Spectra and diagnostics for the direct detection of wide-separation extrasolar giant planets. Astrophys. J. 609, 407–416 (2004).

    ADS  CAS  Google Scholar 

  58. 58

    Barman, T. S., Hauschildt, P. H. & Allard, F. Phase-dependent properties of extrasolar planet atmospheres. Astrophys. J. 632, 1132–1139 (2005).

    ADS  CAS  Google Scholar 

  59. 59

    Madhusudhan, N. & Burrows, A. Analytic models for albedos, phase curves, and polarization of reflected light from exoplanets. Astrophys. J. 747, 25–40 (2012).

    ADS  Google Scholar 

  60. 60

    Esteves, L. J., De Mooij, E. J. W. & Jayawardhana, R. Optical phase curves of Kepler exoplanets. Astrophys. J. 772, 51–64 (2013).

    ADS  Google Scholar 

  61. 61

    Rowe, J. et al. The very low albedo of an extrasolar planet: MOST space-based photometry of HD 209458. Astrophys. J. 689, 1345–1353 (2008).

    ADS  Google Scholar 

  62. 62

    Burrows, A., Ibgui, L. & Hubeny, I. Optical albedo theory of strongly-irradiated giant planets: the case of HD 209458b. Astrophys. J. 682, 1277–1282 (2008).

    ADS  CAS  Google Scholar 

  63. 63

    Knutson, H. A. et al. A map of the day-night contrast of the extrasolar planet HD 189733b. Nature 447, 183–186 (2007). Using one of the first exoplanet light curves, this paper determined a crude surface temperature map of an exoplanet.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Knutson, H. A. et al. 3.6 and 4.6 μ phase curves and evidence for non-equilibrium chemistry in the atmosphere of extrasolar planet HD 189733b. Astrophys. J. 754, 22–37 (2012).

    ADS  Google Scholar 

  65. 65

    Majeau, C., Agol, E. & Cowan, N. B. A. Two-dimensional map of the extrasolar planet HD 189733b. Astrophys. J. 747, L20–L24 (2012).

    ADS  Google Scholar 

  66. 66

    Knutson, H. A. et al. The 8 μ phase variation of the hot Saturn HD 149026b. Astrophys. J. 703, 769–784 (2009).

    ADS  CAS  Google Scholar 

  67. 67

    Lewis, N. K. et al. Orbital phase variations of the eccentric giant planet HAT-P-2b. Astrophys. J. 766, 95–117 (2013).

    ADS  Google Scholar 

  68. 68

    Cowan, N. B. et al. Thermal phase variations of WASP-12b: defying predictions. Astrophys. J. 747, 82–98 (2012).

    ADS  Google Scholar 

  69. 69

    Crossfield, I. J. M. et al. A new 24 μ phase curve for υ Andromedae b. Astrophys. J. 723, 1436–1446 (2010).

    ADS  CAS  Google Scholar 

  70. 70

    Seager, S., Whitney, B. A. & Sasselov, D. D. Photometric light curves and polarization of close-in extrasolar giant planets. Astrophys. J. 540, 504–520 (2000).

    ADS  CAS  Google Scholar 

  71. 71

    Snellen, I. A. G., de Kok, R. J., de Mooij, E. J. W. & Albrecht, S. The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b. Nature 465, 1049–1051 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    de Kok, R., et al. Detection of carbon monoxide in the high-resolution day-side spectrum of the exoplanet HD 189733b. Astron. Astrophys. 554, A82 (2013).

    Google Scholar 

  73. 73

    Birkby, J. et al. Detection of water absorption in the day side atmosphere of HD 189733b using ground-based high-resolution spectroscopy at 3.2 μ. Mon. Not. R. Astron. Soc. 436, L35–L39 (2013).

    ADS  CAS  Google Scholar 

  74. 74

    Brogi, M. et al. The signature of orbital motion from the dayside of the planet τ Boötes b. Nature 486, 502–504 (2012).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Snellen, I. A. G. et al. The fast spin-rotation of the young extra-solar planet β Pictoris b. Nature 509, 63–65 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  76. 76

    Crossfield, I. J. M. et al. A global cloud map of the nearest known brown dwarf. Nature 505, 654–656 (2014).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Burrows, A. A theoretical look at the direct detection of giant planets outside the Solar System. Nature 433, 261–268 (2005).

    ADS  CAS  Google Scholar 

  78. 78

    Marois, C. et al. Direct imaging of multiple planets orbiting the star HR 8799. Science 322, 1348–1352 (2008). This paper represents the coming of age of the direct, high-contrast imaging technique of exoplanet discovery and characterization.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Marois, C., Zuckerman, B., Konopacky, Q. M., Macintosh, B. & Barman, T. Images of a fourth planet orbiting HR 8799. Nature 468, 1080–1083 (2010).

    ADS  CAS  Google Scholar 

  80. 80

    Lagrange, A. M. et al. A probable giant planet imaged in the β Pictoris disk. VLT/NaCo deep L'-band imaging. Astron. Astrophys. 493, L21–L25 (2009).

    ADS  Google Scholar 

  81. 81

    Madhusudhan, N., Burrows, A. & Currie, T. Model atmospheres for massive gas giants with thick clouds: application to the HR 8799 planets. Astrophys. J. 737, 34–48 (2011).

    ADS  Google Scholar 

  82. 82

    Konopacky, Q. M., Barman, T. S., Macintosh, B. A. & Marois, C. Detection of carbon monoxide and water absorption lines in an exoplanet atmosphere. Science 339, 1398–1401 (2013).

    ADS  CAS  Google Scholar 

  83. 83

    Kaltenegger, L., Traub, W. A. & Jucks, K. W. Spectral evolution of an Earth-like planet. Astrophys. J. 658, 598–616 (2007).

    ADS  CAS  Google Scholar 

  84. 84

    Ehrenreich, D., Tinetti, G., Lecavelier Des Etangs, A., Vidal-Madjar, A. & Selsis, F. The transmission spectrum of Earth-size transiting planets. Astron. Astrophys. 448, 379–393 (2006).

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges support in part under Hubble Space Telescope grants HST-GO-12181.04-A, HST-GO-12314.03-A, HST-GO-12473.06-A, and HST-GO-12550.02 and Jet Propulsion Laboratory/Spitzer Agreements 1417122, 1348668, 1371432, 1377197 and 1439064.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adam S. Burrows.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Additional information

Reprints and permissions information is available at www.nature.com/reprints.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Burrows, A. Highlights in the study of exoplanet atmospheres. Nature 513, 345–352 (2014). https://doi.org/10.1038/nature13782

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links