Abstract

The strong present-day Asian monsoons are thought to have originated between 25 and 22 million years (Myr) ago, driven by Tibetan–Himalayan uplift. However, the existence of older Asian monsoons and their response to enhanced greenhouse conditions such as those in the Eocene period (55–34 Myr ago) are unknown because of the paucity of well-dated records. Here we show late Eocene climate records revealing marked monsoon-like patterns in rainfall and wind south and north of the Tibetan–Himalayan orogen. This is indicated by low oxygen isotope values with strong seasonality in gastropod shells and mammal teeth from Myanmar, and by aeolian dust deposition in northwest China. Our climate simulations support modern-like Eocene monsoonal rainfall and show that a reinforced hydrological cycle responding to enhanced greenhouse conditions counterbalanced the negative effect of lower Tibetan relief on precipitation. These strong monsoons later weakened with the global shift to icehouse conditions 34 Myr ago.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Steady decline of east Asian monsoon winds, 1969–2000: evidence from direct ground measurements of wind speed. J. Geophys. Res. 111, D24111 (2006)

  2. 2.

    & Global summer monsoon rainy seasons. Int. J. Climatol. 28, 1563–1578 (2008)

  3. 3.

    & Sensitivity of the Indian Monsoon to forcing parameters and implications for its evolution. Nature 360, 647–652 (1992)

  4. 4.

    & Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218–222 (2010)

  5. 5.

    et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geosci. 351, 875–881 (2008)

  6. 6.

    & Paleo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet. Nature 439, 677–681 (2006)

  7. 7.

    , & Tibetan uplift prior to the Eocene–Oligocene climate transition: evidence from pollen analysis of the Xining Basin. Geology 36, 987–990 (2008)

  8. 8.

    , & Orographic controls on climate and paleoclimate of Asia: thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci. 38, 77–102 (2010)

  9. 9.

    et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163 (2002)

  10. 10.

    et al. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25 Ma ago. Sci. China Earth Sci. 54, 136–144 (2011)

  11. 11.

    & How old is the Asian monsoon system? Paleobotanical records from China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 181–222 (2005)

  12. 12.

    , , , & Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005)

  13. 13.

    , , , & Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001)

  14. 14.

    , , & Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788–795 (1997)

  15. 15.

    , & Simulating the evolution of the Asian and African monsoons during the past 30 Myr using an atmospheric general circulation model. J. Geophys. Res. 104, 11995–12018 (1999)

  16. 16.

    , , & Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimatic patterns in China. Earth Planet. Sci. Lett. 257, 622–634 (2007)

  17. 17.

    et al. Early Eocene Asian climate dominated by desert and steppe with limited monsoons. J. Asian Earth Sci. 44, 24–35 (2012)

  18. 18.

    et al. Late Eocene sea retreat from the Tarim Basin (west China), and concomitant Asian paleoenvironmental change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 385–398 (2011)

  19. 19.

    & Eocene monsoons. J. Asian Earth Sci. 44, 3–23 (2012)

  20. 20.

    , & Eocene monsoon prevalence over China: a paleobotanical perspective. Palaeogeogr. Palaeoclimatol. Palaeoecol. 365–366, 302–311 (2012)

  21. 21.

    , , , & Eocene prevalence of monsoon-like climate over eastern China reflected by hydrological dynamics. J. Asian Earth Sci. 62, 776–787 (2013)

  22. 22.

    et al. Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology 29, 31–34 (2001)

  23. 23.

    et al. Oxygen isotopes of bovid teeth as archives of paleoclimatic variations in archaeological deposits of the Ganga plain, India. Quat. Res. 62, 19–28 (2004)

  24. 24.

    , & Pakistan mammal tooth stable isotopes show paleoclimatic and paleoenvironmental changes since the early Oligocene. Palaeogeogr. Palaeoclimatol. Palaeoecol. 311, 19–29 (2011)

  25. 25.

    , , & Stable isotopes in precipitation in the Asian monsoon region. J. Geophys. Res. 110, D23108 (2005)

  26. 26.

    et al. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in Southern Meghalaya, NE India. Earth Planet. Sci. Lett. 292, 212–220 (2010)

  27. 27.

    , & Stable isotope composition of precipitation over southeast Asia. J. Geophys. Res. 742, 721–728 (1998)

  28. 28.

    & Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chem. Geol. 59, 59–74 (1986)

  29. 29.

    , , , & C and O isotope compositions of modern fresh-water mollusc shells and river waters from the Himalaya and Ganga plain. Chem. Geol. 233, 156–183 (2006)

  30. 30.

    , & Herbivor tooth oxygen isotope compositions: effects of diet and physiology. Geochim. Cosmochim. Acta 60, 3889–3896 (1996)

  31. 31.

    et al. A palaeo Tibet–Myanmar connection? Reconstructing the Late Eocene drainage system of central Myanmar using a multi-proxy approach. J. Geol. Soc. Lond. 170, 929–939 (2013)

  32. 32.

    et al. Modelling the oxygen isotope distribution of ancient seawater using a coupled ocean–atmosphere GCM: implications for reconstructing early Eocene climate. Earth Planet. Sci. Lett. 292, 265–273 (2010)

  33. 33.

    , , & Nature of laminations and mineralization in rhinoceros enamel using histology and X-ray synchrotron microtomography: potential implications for palaeoenvironmental isotopic studies. Palaeogeogr. Palaeoclimatol. Palaeoecol. 246, 206–227 (2007)

  34. 34.

    et al. Systematics and paleobiology of the anthropoid primate Pondaungia from the late Middle Eocene of Myanmar. C. R. Palevol 3, 243–255 (2004)

  35. 35.

    et al. Influence of permeability barriers in alluvial hydromorphic palaeosols: the Eocene Pondaung Formation, Myanmar. Sedimentology 61, 362–382 (2014)

  36. 36.

    et al. Fossil woods from the Late Middle Eocene Pondaung Formation, Myanmar. Rev. Palaeobot. Palynol. 202, 29–46 (2014)

  37. 37.

    et al. Tibetan plateau aridification linked to global cooling at the Eocene–Oligocene transition. Nature 445, 635–638 (2007)

  38. 38.

    , , , & Step-wise change of Asian interior climate preceding the Eocene–Oligocene transition (EOT). Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 399–412 (2011)

  39. 39.

    & Atlas of Quartz Sand Surface Textures (Cambridge Univ. Press, 1973)

  40. 40.

    Grain size of fine-grained windblown sediment: a powerful proxy for process identification. Earth Sci. Rev. 121, 18–30 (2013)

  41. 41.

    , & Aeolian origin and palaeoclimatic implications of the ‘Red Clay’ (north China) as evidenced by grain-size distribution. J. Quat. Sci. 16, 89–97 (2001)

  42. 42.

    , , & Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: implications for variations in the East Asian winter monsoon and westerly atmospheric circulation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 264, 39–53 (2008)

  43. 43.

    et al. Mudflat/distal fan and shallow lake sedimentation (upper Vallesian–Turolian) in the Tianshui Basin, Central China: evidence against the late Miocene eolian loess. Sedim. Geol. 222, 42–51 (2009)

  44. 44.

    et al. The LMDZ4 general circulation model: climate performance and sensitivity to parametrized physics with emphasis on tropical convection. Clim. Dyn. 27, 787–813 (2006)

  45. 45.

    et al. Global continental and ocean basin reconstructions since 200 Ma. Earth-Sci. Rev. 113, 212–270 (2012)

  46. 46.

    Late Jurassic–Cenozoic reconstructions of the Indonesian region and the Indian Ocean. Tectonophysics 570–571, 1–41 (2012)

  47. 47.

    et al. Antarctic topography at the Eocene–Oligocene boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 335–336, 24–34 (2012)

  48. 48.

    , & Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets. Paleoceanography 22, PA3214 (2007)

  49. 49.

    , , , & Deciphering the role of southern gateways and carbon dioxide on the onset of the Antarctic Circumpolar Current. Paleoceanography 27, PA4201 (2012)

  50. 50.

    et al. A long-term numerical solution for the insolation quantities of the Earth. Astron. Astrophys. 428, 261–285 (2004)

Download references

Acknowledgements

We thank the Commissariat a l'Energie Atomique/Centre de Calcul Recherche et Technologie for access to computing facilities; V. Barbin for cathodoluminescence microscopy; C. Fontaine for X-ray diffraction; R. Amiot, T. Bouten, M. Konert, M. Lebbink and T. Zalm for laboratory assistance; the many colleagues of the Franco-Burmese palaeontological team for field assistance; and D. Dettman and F. Fluteau for discussions. This work was supported by the ANR-09-BLAN-0238-02 Program, the University of Poitiers, the Netherlands Organisation for Scientific Research (NWO-ALW) with funding to H.A. and G.D.-N., the Marie Curie CIG 294282, the Ministry of Culture of the Republic of the Union of Myanmar, the French ministries of Foreign Affairs and of Higher Education and Research, the Alexander von Humboldt Foundation, the Chinese Ministry of Education and the National Natural Science Foundation of China (NSFC). A.L. was also funded by a Fyssen Foundation study grant.

Author information

Affiliations

  1. Institut de Paléoprimatologie, Paléontologie Humaine: Evolution et Paléoenvironnements, UMR CNRS 7262, Université de Poitiers, 86000 Poitiers, France

    • A. Licht
    •  & J.-J. Jaeger
  2. Centre de Recherches Pétrographiques et Géochimiques, UMR CNRS 7358, Université de Lorraine 54501 Vandoeuvre les Nancy, France

    • A. Licht
    • , C. France-Lanord
    •  & T. Rigaudier
  3. Department of Geosciences, University of Arizona, Tucson, Arizona 85721, USA

    • A. Licht
    •  & J. Quade
  4. Department of Earth Sciences, Universiteit Utrecht, 3584CD, Utrecht, The Netherlands

    • M. van Cappelle
    • , H. A. Abels
    •  & G. Dupont-Nivet
  5. Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK

    • M. van Cappelle
  6. Department of Earth and Environmental Sciences, Katholieke Universiteit Leuven, 3001 Leuven, Belgium

    • H. A. Abels
    •  & R. Adriaens
  7. Laboratoire des Sciences du Climat et de l’Environnement, UMR CNRS 8212, 91198 Gif-sur-Yvette, France

    • J.-B. Ladant
    •  & Y. Donnadieu
  8. Department of Earth Sciences, Durham University, Durham DH1 3LE, UK

    • J. Trabucho-Alexandre
  9. Department of Earth Sciences, Vrije Universiteit, 1081HV Amsterdam, The Netherlands

    • J. Vandenberghe
  10. Laboratoire de Géologie de Lyon, Terre, Planètes, Environnement, UMR CNRS 5276, Université de Lyon, Institut Universitaire de France, 69622 Lyon, France

    • C. Lécuyer
  11. Department of Earth and Environmental Science, Temple University, Philadelphia, Pennsylvania 19122, USA

    • D. Terry Jr
  12. Centre de Recherche sur la Paléodiversité et les Paléoenvironnements – UPMC, MNHN, CNRS, 75005 Paris, France

    • A. Boura
  13. Key Laboratory of Orogenic Belts and Crustal Evolution, Peking University, 100871 Beijing, China

    • Z. Guo
    •  & G. Dupont-Nivet
  14. Department of Geology, Defence Services Academy, Pyin Oo Lwin, Myanmar

    • Aung Naing Soe
  15. Géosciences Rennes, UMR CNRS 6118, Université de Rennes, 35042 Rennes Cedex, France

    • G. Dupont-Nivet
  16. Universität Potsdam, Institute of Earth and Environmental Science, 14476 Potsdam, Germany

    • G. Dupont-Nivet

Authors

  1. Search for A. Licht in:

  2. Search for M. van Cappelle in:

  3. Search for H. A. Abels in:

  4. Search for J.-B. Ladant in:

  5. Search for J. Trabucho-Alexandre in:

  6. Search for C. France-Lanord in:

  7. Search for Y. Donnadieu in:

  8. Search for J. Vandenberghe in:

  9. Search for T. Rigaudier in:

  10. Search for C. Lécuyer in:

  11. Search for D. Terry Jr in:

  12. Search for R. Adriaens in:

  13. Search for A. Boura in:

  14. Search for Z. Guo in:

  15. Search for Aung Naing Soe in:

  16. Search for J. Quade in:

  17. Search for G. Dupont-Nivet in:

  18. Search for J.-J. Jaeger in:

Contributions

A.L., J.-J.J., H.A. and G.D.-N. conceived the project. A.L., A.N.S. and J.-J.J. collected Burmese samples. A.L., T.R., C.F.-L. and C.L. performed isotopic analyses. H.A., G.D.-N., M.v.C., D.T. and Z.G. collected Chinese samples. M.v.C., H.A., J.T.A., D.T., J.V. and R.A. performed petrographic and grain-size analyses of the Xining sediment. J.-B.L. and Y.D. conducted numerical climate modelling. A.L., H.A., M.v.C. and G.D.-N. wrote the manuscript with contributions from all authors.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to A. Licht.

Extended data

Supplementary information

Excel files

  1. 1.

    Supplementary Data

    This file contains Supplementary Tables 1-3.

  2. 2.

    Supplementary Data

    This file contains Supplementary Tables 4-5.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nature13704

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.