Magneto-optical trapping of a diatomic molecule


Laser cooling and trapping are central to modern atomic physics. The most used technique in cold-atom physics is the magneto-optical trap (MOT), which combines laser cooling with a restoring force from radiation pressure. For a variety of atomic species, MOTs can capture and cool large numbers of particles to ultracold temperatures (less than 1 millikelvin); this has enabled advances in areas that range from optical clocks to the study of ultracold collisions, while also serving as the ubiquitous starting point for further cooling into the regime of quantum degeneracy. Magneto-optical trapping of molecules could provide a similarly powerful starting point for the study and manipulation of ultracold molecular gases. The additional degrees of freedom associated with the vibration and rotation of molecules, particularly their permanent electric dipole moments, allow a broad array of applications not possible with ultracold atoms1. Spurred by these ideas, a variety of methods has been developed to create ultracold molecules. Temperatures below 1 microkelvin have been demonstrated for diatomic molecules assembled from pre-cooled alkali atoms2,3, but for the wider range of species amenable to direct cooling and trapping, only recently have temperatures below 100 millikelvin been achieved4,5. The complex internal structure of molecules complicates magneto-optical trapping. However, ideas and methods necessary for creating a molecular MOT have been developed6,7,8,9,10,11 recently. Here we demonstrate three-dimensional magneto-optical trapping of a diatomic molecule, strontium monofluoride (SrF), at a temperature of approximately 2.5 millikelvin, the lowest yet achieved by direct cooling of a molecule. This method is a straightforward extension of atomic techniques and is expected to be viable for a significant number of diatomic species6,7. With further development, we anticipate that this technique may be employed in any number of existing and proposed molecular experiments, in applications ranging from precision measurement12 to quantum simulation13 and quantum information14 to ultracold chemistry15.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experimental set-up.
Figure 2: Magneto-optical trapping of SrF.
Figure 3: Measurement of MOT properties.


  1. 1

    Carr, L., DeMille, D., Krems, R. & Ye, J. Cold and ultracold molecules: science, technology and applications. New J. Phys. 11, 055049 (2009)

    ADS  Article  Google Scholar 

  2. 2

    Ni, K.-K. et al. A high phase-space-density gas of polar molecules. Science 322, 231–235 (2008)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Danzl, J. G. et al. An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nature Phys. 6, 265–270 (2010)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Zeppenfeld, M. et al. Sisyphus cooling of electrically trapped polyatomic molecules. Nature 491, 570–573 (2012)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Stuhl, B. K. et al. Evaporative cooling of the dipolar hydroxyl radical. Nature 492, 396–400 (2012)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Di Rosa, M. D. Laser-cooling molecules. Eur. Phys. J. D 31, 395–402 (2004)

    ADS  Article  Google Scholar 

  7. 7

    Stuhl, B. K., Sawyer, B. C., Wang, D. & Ye, J. Magneto-optical trap for polar molecules. Phys. Rev. Lett. 101, 243002 (2008)

    ADS  Article  Google Scholar 

  8. 8

    Shuman, E. S., Barry, J. F., Glenn, D. R. & DeMille, D. Radiative force from optical cycling on a diatomic molecule. Phys. Rev. Lett. 103, 223001 (2009)

    ADS  CAS  Article  Google Scholar 

  9. 9

    Shuman, E. S., Barry, J. F. & DeMille, D. Laser cooling of a diatomic molecule. Nature 467, 820–823 (2010)

    ADS  CAS  Article  Google Scholar 

  10. 10

    Barry, J. F., Shuman, E. S., Norrgard, E. B. & DeMille, D. Laser radiation pressure slowing of a molecular beam. Phys. Rev. Lett. 108, 103002 (2012)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Hummon, M. T. et al. 2D magneto-optical trapping of diatomic molecules. Phys. Rev. Lett. 110, 143001 (2013)

    ADS  Article  Google Scholar 

  12. 12

    The ACME Collaboration. Order of magnitude smaller limit on the electric dipole moment of the electron. Science 343, 269–272 (2014)

  13. 13

    Micheli, A., Brennen, G. K. & Zoller, P. A toolbox for lattice-spin models with polar molecules. Nature Phys. 2, 341–347 (2006)

    ADS  CAS  Article  Google Scholar 

  14. 14

    DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Krems, R. V. Cold controlled chemistry. Phys. Chem. Chem. Phys. 10, 4079–4092 (2008)

    CAS  Article  Google Scholar 

  16. 16

    Hutzler, N. R., Lu, H.-I. & Doyle, J. M. The buffer gas beam: an intense, cold, and slow source for atoms and molecules. Chem. Rev. 112, 4803–4827 (2012)

    CAS  Article  Google Scholar 

  17. 17

    Prentiss, M. G., Bigelow, N. P., Shahriar, M. S. & Hemmer, P. R. Forces on three-level atoms including coherent population trapping. Opt. Lett. 16, 1695–1697 (1991)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Nasyrov, K. et al. Magneto-optical trap operating on a magnetically induced level-mixing effect. Phys. Rev. A 64, 023412 (2001)

    ADS  Article  Google Scholar 

  19. 19

    Prentiss, M., Cable, A., Bjorkholm, J. E., Chu, S. & Raab, E. L. Atomic-density-dependent losses in an optical trap. Opt. Lett. 13, 452–454 (1988)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Flemming, J. et al. Magneto-optical trap for sodium atoms operating on the D1 line. Opt. Commun. 135, 269–272 (1997)

    ADS  CAS  Article  Google Scholar 

  21. 21

    Tiwari, V. B., Singh, S., Rawat, H. S. & Mehendale, S. C. Cooling and trapping of 85Rb atoms in the ground hyperfine F = 2 state. Phys. Rev. A 78, 063421 (2008)

    ADS  Article  Google Scholar 

  22. 22

    Berkeland, D. J. & Boshier, M. G. Destabilization of dark states and optical spectroscopy in Zeeman-degenerate atomic systems. Phys. Rev. A 65, 033413 (2002)

    ADS  Article  Google Scholar 

  23. 23

    Rio Fernandes, D. et al. Sub-Doppler laser cooling of fermionic 40K atoms in three-dimensional gray optical molasses. Europhys. Lett. 100, 63001 (2012)

    ADS  Article  Google Scholar 

  24. 24

    Metcalf, H. J. & van der Straten, P. Laser Cooling and Trapping (Springer, 1999)

    Google Scholar 

  25. 25

    Wallace, C. D. et al. Measurements of temperature and spring constant in a magneto-optical trap. J. Opt. Soc. Am. B 11, 703–711 (1994)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Chieda, M. A. & Eyler, E. E. Prospects for rapid deceleration of small molecules by optical bichromatic forces. Phys. Rev. A 84, 063401 (2011)

    ADS  Article  Google Scholar 

  27. 27

    DeMille, D., Barry, J. F., Edwards, E. R., Norrgard, E. B. & Steinecker, M. H. On the transverse confinement of radiatively slowed molecular beams. Mol. Phys. 111, 1805–1813 (2013)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Hunter, L. R., Peck, S. K., Greenspon, A. S., Alam, S. S. & DeMille, D. Prospects for laser cooling TlF. Phys. Rev. A 85, 012511 (2012)

    ADS  Article  Google Scholar 

  29. 29

    Tarbutt, M. R., Sauer, B. E., Hudson, J. J. & Hinds, E. A. Design for a fountain of YbF molecules to measure the electron's electric dipole moment. New J. Phys. 15, 053034 (2013)

    ADS  Article  Google Scholar 

  30. 30

    Chin, C., Flambaum, V. V. & Kozlov, M. G. Ultracold molecules: new probes on the variation of fundamental constants. New J. Phys. 11, 055048 (2009)

    ADS  Article  Google Scholar 

  31. 31

    Barry, J. F. Laser Cooling and Slowing of a Diatomic Molecule. PhD thesis (Yale Univ., 2013)

    Google Scholar 

  32. 32

    Barry, J. F., Shuman, E. S. & DeMille, D. A bright, slow cryogenic molecular beam source for free radicals. Phys. Chem. Chem. Phys. 13, 18936–18947 (2011)

    CAS  Article  Google Scholar 

  33. 33

    Klöter, B., Weber, C., Haubrich, D., Meschede, D. & Metcalf, H. Laser cooling of an indium atomic beam enabled by magnetic fields. Phys. Rev. A 77, 033402 (2008)

    ADS  Article  Google Scholar 

  34. 34

    Lett, P. D. et al. Observation of atoms laser cooled below the Doppler limit. Phys. Rev. Lett. 61, 169–172 (1988)

    ADS  CAS  Article  Google Scholar 

  35. 35

    Chu, S., Hollberg, L., Bjorkholm, J. E., Cable, A. & Ashkin, A. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett. 55, 48–51 (1985)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Lett, P. D. et al. Optical molasses. J. Opt. Soc. Am. B 6, 2084–2107 (1989)

    ADS  CAS  Article  Google Scholar 

  37. 37

    Hänggi, P., Talkner, P. & Borkovec, M. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys. 62, 251–341 (1990)

    ADS  MathSciNet  Article  Google Scholar 

Download references


We thank E.R. Edwards for contributions towards the construction of the experiment. We acknowledge funding from AFOSR (MURI), ARO, and ARO (MURI). E.B.N. acknowledges funding from the NSF GRFP.

Author information




All authors contributed to the experiment, the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to D. J. McCarron.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Relevant energy levels and transitions in SrF.

a, Vibrational branching in SrF. Solid upward arrows denote transitions driven by the MOT lasers. Spontaneous decays from the A2Π1/2(v′ = 0) state (solid wavy arrows) and A2Π1/2(v′ = 1, 2) states (dashed wavy arrows) are governed by the vibrational branching fractions b0v, b1v and b2v, as shown. b, Optical addressing scheme for the SrF MOT. c, Energy levels of the X2Σ(v = 0, N = 1) state versus B. Energy levels are labelled by their mF value with mF = 2 (red lines), mF = 1 (orange lines), mF = 0 (green), mF = −1 (blue) and mF = −2 (purple).

Extended Data Figure 2 Slowing laser spectra.

a, Scale diagram showing the frequency extent of the , and slowing lasers (vertical red bars) relative to the four SR/HF manifolds of the X2Σ(v = 0, 1, 2; N = 1) states of SrF (horizontal black bars to right). The relative splittings of the four SR/HF levels in the X2Σ(N = 1) state are the same to within 1 MHz for v = 0, 1, 2 (ref. 31). The dashed lines mark the centres of the N = 1 SR/HF levels for the labelled velocity, and the level structure shown corresponds to v = 0 m s−1. b, Optimized spectral profiles of the three slowing lasers. The upper x axis shows velocity for a Doppler shift equivalent to the frequency labelled on the lower x axis. The light is modulated via a fibre EOM with fmod = 3.5 MHz. The and lasers are each modulated by passing through two bulk EOMs with resonant frequencies at 40 MHz and 9 MHz.

Extended Data Figure 3 Molecular beam longitudinal velocity.

Shown are examples of slowed (grey circles) and unslowed (black squares) velocity profiles of the molecular beam detected upstream from the trapping region at . These profiles are for the optimized slowing conditions that produce the largest MOT, as discussed in the main text.

Extended Data Figure 4 MOT dependence on laser frequency.

Shown is LIF in the trapping region versus detuning when Δ00 and are varied together (top), when is varied alone (middle) and when Δ10 is varied alone (bottom). As expected (and typically observed for atomic MOTs), the SrF MOT operates over a fairly narrow range of negative detuning values for the trapping lasers but requires only that the repump lasers be sufficiently near resonance. Error bars, standard error for multiple scans across each detuning range (14 scans for top and middle; 24 scans for bottom).

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barry, J., McCarron, D., Norrgard, E. et al. Magneto-optical trapping of a diatomic molecule. Nature 512, 286–289 (2014).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing