Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts


The history of the Hadean Earth (4.0–4.5 billion years ago) is poorly understood because few known rocks are older than 3.8 billion years old1. The main constraints from this era come from ancient submillimetre zircon grains2,3. Some of these zircons date back to 4.4 billion years ago when the Moon, and presumably the Earth, was being pummelled by an enormous flux of extraterrestrial bodies4. The magnitude and exact timing of these early terrestrial impacts, and their effects on crustal growth and evolution, are unknown. Here we provide a new bombardment model of the Hadean Earth that has been calibrated using existing lunar4 and terrestrial data5. We find that the surface of the Hadean Earth was widely reprocessed by impacts through mixing and burial by impact-generated melt. This model may explain the age distribution of Hadean zircons and the absence of early terrestrial rocks. Existing oceans would have repeatedly boiled away into steam atmospheres as a result of large collisions as late as about 4 billion years ago.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Mass accreted by the Earth during the late accretion phase.
Figure 2: Spatial distribution and sizes of craters formed on the early Earth.
Figure 3: Melt production by large impacts on the Earth.
Figure 4: Detrital Hadean zircon ages compared with the computed distribution of impact-generated ages.


  1. 1

    Kamber, B. S., Moorbath, S. & Whitehouse, M. J. The oldest rocks on Earth: time constraints and geological controversies. Geol. Soc. Lond. Spec. Publ. 190, 177–203 (2001)

    ADS  Article  Google Scholar 

  2. 2

    Cavosie, A. J., Valley, J. W. & Wilde, S. A. In World’s Oldest Rocks (ed. Condie, K. ) 111–129 (Developments in Precambrian Geology vol. 15, Elsevier, 2007)

    Google Scholar 

  3. 3

    Harrison, T. M. The Hadean Crust: evidence from >4 Ga zircons. Annu. Rev. Earth Planet. Sci. 37, 479–505 (2009)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Morbidelli, A., Marchi, S., Bottke, W. F. & Kring, D. A. A sawtooth-like timeline for the first billion years of lunar bombardment. Earth Planet. Sci. Lett. 355–356, 144–151 (2012)

    ADS  Article  CAS  Google Scholar 

  5. 5

    Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Chem. Erde 69, 101–125 (2009)

    CAS  Article  Google Scholar 

  6. 6

    Chambers, J. E. Planetary accretion in the inner Solar System. Earth Planet. Sci. Lett. 223, 241–252 (2004)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Canup, R. M. Dynamics of lunar formation. Annu. Rev. Astron. Astrophys. 42, 441–475 (2004)

    ADS  Article  Google Scholar 

  8. 8

    Sleep, N. H., Zahnle, K. J., Kasting, J. F. & Morowitz, H. J. Annihilation of ecosystems by large asteroid impacts on the early earth. Nature 342, 139–142 (1989)

    ADS  CAS  PubMed  Article  Google Scholar 

  9. 9

    Day, J. M. D., Pearson, D. G. & Taylor, L. A. Highly siderophile element constraints on accretion and differentiation of the Earth–Moon system. Science 315, 217–219 (2007)

    ADS  CAS  PubMed  Article  Google Scholar 

  10. 10

    Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11

    Raymond, S. N., Schlichting, H. E., Hersant, F. & Selsis, F. Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226, 671–681 (2013)

    ADS  Article  Google Scholar 

  12. 12

    Marchi, S. et al. Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61 (2013a)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  13. 13

    Bottke, W. F. et al. An Archaean heavy bombardment from a destabilized extension of the asteroid belt. Nature 485, 78–81 (2012)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14

    Marchi, S. et al. High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nature Geosci. 6, 303–307 (2013b)

    ADS  CAS  Article  Google Scholar 

  15. 15

    Wünnemann, K., Collins, G. S. & Melosh, H. J. A strain-based porosity model for the use in hydro code simulations of impact and implications for transient crater growth in porous targets. Icarus 180, 514–527 (2006)

    ADS  Article  Google Scholar 

  16. 16

    Kemp, A. I. S. et al. Hadean crustal evolution revisited: New constraints from Pb-Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Tonks, W. B. & Melosh, H. J. Magma ocean formation due to giant impacts. J. Geophys. Res. 98, 5319–5333 (1993)

    ADS  Article  Google Scholar 

  18. 18

    Reese, C. C. & Solomatov, V. S. Fluid dynamics of local martian magma oceans. Icarus 184, 102–120 (2006)

    ADS  Article  Google Scholar 

  19. 19

    Elkins-Tanton, L. T. & Hager, B. H. Giant meteoroid impacts can cause volcanism. Earth Planet. Sci. Lett. 239, 219–232 (2005)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Watters, W. A., Zuber, M. T. & Hager, B. H. Thermal perturbations caused by large impacts and consequences for mantle convection. J. Geophys. Res. Planets 114, E02001 (2009)

    ADS  Article  Google Scholar 

  21. 21

    Potter, R. W. K., Collins, G. S., Kiefer, W. S., McGovern, P. J. & Kring, D. A. Constraining the size of the South Pole–Aitken basin impact. Icarus 220, 730–743 (2012)

    ADS  Article  Google Scholar 

  22. 22

    Kamber, B. S., Whitehouse, M. J., Bolhar, R. & Moorbath, S. Volcanic resurfacing and the early terrestrial crust: Zircon U-Pb and REE constraints from the Isua Greenstone Belt, southern West Greenland. Earth Planet. Sci. Lett. 240, 276–290 (2005)

    ADS  CAS  Article  Google Scholar 

  23. 23

    Mojzsis, S. J., Harrison, T. M. & Pidgeon, R. T. Oxygen-isotope evidence from ancient zircons for liquid water at the Earth’s surface 4,300 Myr ago. Nature 409, 178–181 (2001)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24

    Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25

    Wichman, R. W. & Schultz, P. H. Sequence and mechanisms of deformation around the Hellas and Isidis impact basins on Mars. J. Geophys. Res. 94, 17333–17357 (1989)

    ADS  Article  Google Scholar 

  26. 26

    Bedard, J. H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim. Cosmochim. Acta 70, 1188–1214 (2006)

    ADS  CAS  Article  Google Scholar 

  27. 27

    Cavosie, A. J., Valley, J. W. & Wilde, S. A. Magmatic δ18O in 4400–3900 Ma detrital zircons: a record of the alteration and recycling of crust in the Early Archean. Earth Planet. Sci. Lett. 235, 663–681 (2005)

    ADS  CAS  Article  Google Scholar 

  28. 28

    Abramov, O., Kring, D. A. & Mojzsis, S. J. The impact environment of the Hadean Earth. Chemie Erde Geochem. 73, 227–248 (2013)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Griffin, W. L. et al. The world turns over: Hadean–Archean crust–mantle evolution. Lithos 189, 2–15 (2014)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Watson, E. B. & Harrison, T. M. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science 308, 841–844 (2005)

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  31. 31

    Darling, J., Storey, C. & Hawkesworth, C. Impact melt sheet zircons and their implications for the Hadean crust. Geochim. Cosmochim. Acta 73 (Suppl.), 927–930 (2009)

    Google Scholar 

  32. 32

    Holden, P., Lanc, P. & Ireland, T. et al. Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: the first 100,000 grains. Int. J. Mass Spectrom. 286, 53–63 (2009)

    CAS  Article  Google Scholar 

  33. 33

    Strom, R. G., Malhotra, R., Ito, T., Yoshida, F. & Kring, D. A. The origin of planetary impactors in the inner Solar System. Science 309, 1847–1850 (2005)

    ADS  CAS  PubMed  Article  Google Scholar 

  34. 34

    Marchi, S., Mottola, S., Cremonese, G., Massironi, M. & Martellato, E. A new chronology for the Moon and Mercury. Astron. J. 137, 4936–4948 (2009)

    ADS  Article  Google Scholar 

  35. 35

    Marchi, S., Bottke, W. F., Kring, D. A. & Morbidelli, A. The onset of the lunar cataclysm as recorded in its ancient crater populations. Earth Planet. Sci. Lett. 325, 27–38 (2012)

    ADS  Article  CAS  Google Scholar 

  36. 36

    Fassett, C. I., Head, J. W. & Kadish, S. J. et al. Lunar impact basins: stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data. J. Geophys. Res. Planets 117, E00L08 (2012)

    Google Scholar 

  37. 37

    Schlichting, H. E., Warren, P. H. & Yin, Q.-Z. The last stages of terrestrial planet formation: dynamical friction and the late veneer. Astrophys. J. 752, 1–8 (2012)

    Article  CAS  Google Scholar 

  38. 38

    Melosh, H. J. Impact Cratering: A Geologic Process (Oxford Monographs on Geology and Geophysics no. 11, Clarendon Press, 1989)

    Google Scholar 

  39. 39

    Murray, C. D. & Dermott, S. F. Solar System Dynamics (Cambridge Univ. Press, 1999)

    Google Scholar 

  40. 40

    Ryder, G. Mass flux in the ancient Earth–Moon system and benign implications for the origin of life on Earth. J. Geophys. Res. Planets 107, E45022 (2002)

    ADS  Article  Google Scholar 

  41. 41

    Norman, M. D. & Nemchin, A. A. A 4.2 billion year old impact basin on the Moon: U–Pb dating of zirconolite and apatite in lunar melt rock 67955. Earth Planet. Sci. Lett. 388, 387–398 (2014)

    ADS  CAS  Article  Google Scholar 

  42. 42

    Leinhardt, Z. M. & Stewart, S. T. Collisions between gravity-dominated bodies. I. Outcome regimes and scaling laws. Astrophys. J. 745, 79 (2012)

    ADS  Article  Google Scholar 

  43. 43

    Tonks, W. B. & Melosh, H. J. Core formation by giant impacts. Icarus 100, 326–346 (1992)

    ADS  Article  Google Scholar 

  44. 44

    Kleine, T., Kruijer, T. S. & Sprung, P. in Lunar and Planetary Science Conf. 45. 2895 (2014)

  45. 45

    O’Keefe, J. D. & Ahrens, T. J. Planetary cratering mechanics. J. Geophys. Res. 98 (E9). 17011–17028 (1993)

    ADS  Article  Google Scholar 

  46. 46

    Holsapple, K. A. The scaling of impact processes in planetary sciences. Annu. Rev. Earth Planet. Sci. 21, 333–373 (1993)

    ADS  Article  Google Scholar 

  47. 47

    Wünnemann, K., Nowka, D., Collins, G. S., Elbeshausen, D. & Bierhaus, M. in Proceedings of 11th Hypervelocity Impact Symposium. 1-13 (2011)

  48. 48

    Elbeshausen, D., Wünnemann, K. & Collins, G. S. Scaling of oblique impacts in frictional targets: implications for crater size and formation mechanisms. Icarus 10.1016/j.icarus.2009.07.018. (2009)

  49. 49

    Grieve, R. A. F. & Cintala, M. J. An analysis of different impact melt-crater scaling and implications for the terrestrial impact record. Meteoritics 27, 526–538 (1992)

    ADS  Article  Google Scholar 

  50. 50

    Ahrens, T. J. & O’Keefe, J. D. in Impact and Explosion Cratering (eds Roddy, D. J., Pepin, R. O. & Merrill, R. B. ) 639–656 (Pergamon, 1977)

    Google Scholar 

  51. 51

    Bjorkman, M. D. & Holsapple, K. A. Velocity scaling impact melt volume. Int. J. Impact Eng. 5, 155–163 (1987)

    ADS  Article  Google Scholar 

  52. 52

    Grieve, R. A., Cintala, M. J. & Therriault, A. M. Large-scale Impacts and the Evolution of the Earth’s Crust: the Early Years (Geol. Soc. Am. Spec. Pap. 405, 2006)

    Google Scholar 

  53. 53

    Pierazzo, E., Vickery, A. M. & Melosh, H. J. A reevaluation of impact melt production. Icarus 127, 408–423 (1997)

    ADS  Article  Google Scholar 

  54. 54

    Abramov, O., Wong, S. M. & Kring, D. A. Differential melt scaling for oblique impacts on terrestrial planets. Icarus 218, 906–916 (2012)

    ADS  Article  Google Scholar 

  55. 55

    Ivanov, B. A. & Artemieva, N. A. in Catastrophic Events and Mass Extinctions: Impact and Beyond (eds Koeberl, C. & MacLeod, K. ) 619–629 (Geol. Soc. Am. Spec. Pap. 356, 2002)

    Google Scholar 

  56. 56

    Pierazzo, E. & Melosh, H. J. Melt production in oblique impacts. Icarus 145, 252–261 (2000)

    ADS  Article  Google Scholar 

  57. 57

    Chapman, C. R. & McKinnon, W. B. in Satellites (eds Burns, J. A. & Matthews, M. S. ) 492–580 (Univ. Arizona Press, 1986)

    Google Scholar 

  58. 58

    Thompson, S. L. & Lauson, H. S. Improvements in the Chart D Radiation—Hydrodynamic Code 3: Revised Analytic Equation of State (Sandia Laboratories report SC-RR-71 0714, 1972)

    Google Scholar 

  59. 59

    Benz, W., Cameron, A. G. W. & Melosh, H. J. The origin of the phase transition (g/cm3) Moon and the single impact hypothesis. III. Icarus 81, 113–131 (1989)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  60. 60

    Melosh, H. J. A hydrocode equation of state for SiO2 . Meteorit. Planet. Sci. 42, 2079–2098 (2007)

    ADS  CAS  Article  Google Scholar 

  61. 61

    Wünnemann, K., Collins, G. S. & Osinski, G. R. Numerical modelling of impact melt production in porous rocks. Earth Planet. Sci. Lett. 269, 530–539 (2008)

    ADS  Article  CAS  Google Scholar 

  62. 62

    Collins, G. S., Melosh, H. J. & Ivanov, B. A. Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004)

    ADS  CAS  Article  Google Scholar 

  63. 63

    Melosh, H. J. Acoustic fluidization: a new geologic process? J. Geophys. Res. 84, 7513–7520 (1979)

    ADS  Article  Google Scholar 

  64. 64

    Bierhaus, M., Noack, L., Wuennemann, K. & Breuer, D. in Lunar and Planetary Science Conf. 44. 2420 (2013)

  65. 65

    Stöffler, D. Deformation and transformation of rock-forming minerals by natural and experimental shock processes. I. Behavior of minerals under shock compression. Fortschr. Mineral. 49, 50–113 (1972)

    Google Scholar 

  66. 66

    Jones, A. P., Wünnemann, K. & Price, D. in Plates, Plumes, and Paradigms (eds Foulger, G. R., Natland, J. H., Presnall, D. C. & Anderson, D. L. ) 711–720 (Geol. Soc. Am. Spec. Pap. 388, 2005)

    Google Scholar 

  67. 67

    Huffman, A. R. & Reimold, W. U. Experimental constraints on shock-induced microstructures in naturally deformed silicates. Tectonophysics 256, 165–217 (1996)

    ADS  CAS  Article  Google Scholar 

  68. 68

    Schmitt, R. T. Shock experiments with the H6 chondrite Kernouve: pressure calibration of microscopic shock effects. Meteorit. Planet. Sci. 35, 545–560 (2000)

    ADS  CAS  Article  Google Scholar 

  69. 69

    Ivanov, B. A. & Melosh, H. J. Impacts do not initiate volcanic eruptions: eruptions close to the crater. Geology 31, 869–872 (2003)

    ADS  Article  Google Scholar 

  70. 70

    Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010)

    ADS  CAS  Article  Google Scholar 

  71. 71

    McKinnon, W. B. & Schenk, P. M. Ejecta blanket scaling on the Moon and Mercury—inferences for projectile populations. Lunar Planet. Inst. Sci. Conf, Abstr. 16, 544–545 (1985)

    ADS  Google Scholar 

  72. 72

    Wielicki, M. M., Harrison, T. M. & Schmitt, A. K. Geochemical signatures and magmatic stability of terrestrial impact produced zircon. Earth Planet. Sci. Lett. 321, 20–31 (2012)

    ADS  Article  CAS  Google Scholar 

  73. 73

    Harrison, T. M. & Schmitt, A. K. High sensitivity mapping of Ti distributions in Hadean zircons. Earth Planet. Sci. Lett. 261, 9–19 (2007)

    ADS  CAS  Article  Google Scholar 

  74. 74

    Nutman, A. P. Comment on ‘Zircon thermometer reveals minimum melting conditions on earliest Earth’ II. Science 311, 779 (2006)

    CAS  PubMed  Article  Google Scholar 

  75. 75

    Turcotte, D. L. & Schubert, G. Geodynamics 2nd edn (Cambridge Univ. Press, 2002)

    Google Scholar 

  76. 76

    Rogers, A. D. & Nazarian, A. H. Evidence for Noachian flood volcanism in Noachis Terra, Mars, and the possible role of Hellas impact basin tectonics. J. Geophys. Res. Planets 118, 1094–1113 (2013)

    ADS  CAS  Article  Google Scholar 

  77. 77

    Pearce, J. A. Geochemical fingerprinting of the Earth’s oldest rocks. Geology 42, 175–176 (2014)

    ADS  Article  Google Scholar 

  78. 78

    Zahnle, K. et al. Emergence of a habitable planet. Space Sci. Rev. 129, 35–78 (2007)

    ADS  CAS  Article  Google Scholar 

  79. 79

    Sleep, N. H. The Hadean–Archaean environment. Cold Spring Harb. Perspect. Biol. 2, a002527 (2010)

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80

    Arndt, N. T. & Nisbet, E. G. Processes on the young Earth and the habitats of early life. Annu. Rev. Earth Planet. Sci. 40, 521–549 (2012)

    ADS  CAS  Article  Google Scholar 

Download references


We thank H. J. Melosh, S. J. Mojzsis, T. M. Harrison, A. J. Cavosie, A. I. S. Kemp, W. L. Griffin, M. M. Wielicki, R. J. Walker, E. B. Watson, P. Holden, O. Abramov, R. M. Canup, H. F. Levison, D. Nesvorny, O. Nebel, N. H. Sleep and N. Arndt for comments and criticisms that helped to shape the current paper. We gratefully acknowledge the developers of iSALE-2D/3D (http://www.isale-code.de/). S.M., W.F.B. and D.A.K. received support from the NASA Solar System Exploration Research Virtual Institute grant no. NNA14AB03A and NNA14AB07A; K.W. and M.B. were supported by the Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V. Alliance ‘Planetary Evolution and Life’. A.M. was supported by the European Research Council Advanced Grant ‘ACCRETE’ (contract number 290568).

Author information




S.M. conceived the paper, built the Monte Carlo code and executed the simulations. W.F.B. and A.M. contributed to calibration and testing of the code, and to performing the fit of zircon age distributions. M.B. and K.W. executed iSALE impact simulations and processed the results. L.T.E.T. performed the geophysical interpretation of the output of the simulations. D.A.K. interpreted the melt volume. All authors contributed to the discussion of the results and their implications and to the crafting of the manuscript.

Corresponding author

Correspondence to S. Marchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Early Earth’s impactor size–frequency distributions.

The red curve corresponds to current main-belt asteroids larger than 10 km. The largest object is Ceres, whose diameter is 913 km. The black curve (vertically shifted for clarity) is a replicate of the main-belt curve, extrapolated to 4,000 km by using the slope in the size range 500–913 km.

Extended Data Figure 2 Lunar impact fluxes.

The differential number of lunar craters >20 km (N20) as a function of time and per unit surface for several scenarios discussed in the text.

Extended Data Figure 3 Solidus and geotherm used in iSALE simulations.

Note the temperature increase in the lithosphere that results in an increase in the temperature of buried surface material. Other processes resulting in an increase of the temperature of the buried crust are discussed in the text. The assumed thermal gradient is a lower limit (see Extended Data Table 1), implying that the increase in the temperature of the buried material can be significantly higher than is shown here.

Extended Data Figure 4 Impact-generated melt volume.

Left, comparison of melt volume production for various methods; right, comparison of melt volume production for various impact velocities and mantle potential temperature (see the text for more details).

Extended Data Figure 5 Melt spreading over the first 100 Myr of Earth history.

Mollweide projections of the cumulative record of craters at four different times. There are portions of the Earth’s surface that are not affected by impact-generated melt at each time step, except for the first 25 Myr (or >4.475 Gyr). However, there is no significant fraction of the Earth’s surface that is unaffected by impacts before 4 Gyr ago (see also Fig. 2b). Impacts therefore set the stage for the environmental conditions on the Hadean Earth and have implications for the origin and development of life (see, for instance, discussion in refs 78,79,80).

Extended Data Figure 6 Minimum impact time for projectiles larger than 500 km.

Blue dots indicate the minimum impact time for impactors larger than 500 km recorded in 163 successful Monte Carlo simulations (see Fig. 1). The vertical axis reports the number of impacts (in bins of 25 Myr each) normalized by the number of simulations. The lowest y values shown in the plot correspond to one impact. The median time is 4.32 Gyr ago, and the mean is 4.27 Gyr ago. The earliest evidence of life on Earth (3.8 Gyr ago), and the start of the Late Heavy bombardment (4.15 Gyr ago; see the text) are also indicated. About 10% of the simulations have a minimum time of 4 Gyr ago or less.

Extended Data Table 1 Various parameters used for iSALE simulations

Related audio

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marchi, S., Bottke, W., Elkins-Tanton, L. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014). https://doi.org/10.1038/nature13539

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing