Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A deep crust–mantle boundary in the asteroid 4 Vesta

Abstract

The asteroid 4 Vesta was recently found to have two large impact craters near its south pole, exposing subsurface material. Modelling suggested that surface material in the northern hemisphere of Vesta came from a depth of about 20 kilometres, whereas the exposed southern material comes from a depth of 60 to 100 kilometres. Large amounts of olivine from the mantle were not seen, suggesting that the outer 100 kilometres or so is mainly igneous crust. Here we analyse the data on Vesta and conclude that the crust–mantle boundary (or Moho) is deeper than 80 kilometres.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Pyroxenes composition in regions expected to expose mantle rocks.
Figure 2: Initial depths and mass fractions of rocks that escaped Vesta.
Figure 3: Potential internal structures for Vesta.

References

  1. Schenk, P. et al. The geologically recent giant impact basins at Vesta’s south pole. Science 336, 694–697 (2012)

    Article  CAS  ADS  Google Scholar 

  2. Jutzi, M., Asphaug, E., Gillet, P., Barrat, J.-A. & Benz, W. The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions. Nature 494, 207–210 (2013)

    Article  CAS  ADS  Google Scholar 

  3. Ivanov, B. A. & Melosh, H. J. 2D numerical modeling of the Rheasilvia impact formation. J. Geophys. Res. Planets 118, 1545–1557 (2013)

    Article  ADS  Google Scholar 

  4. McCord, T. B., Adams, J. B. & Johnson, T. V. Asteroid Vesta: spectral reflectivity and compositional implications. Science 168, 1445–1447 (1970)

    Article  CAS  ADS  Google Scholar 

  5. Ruzicka, A., Snyder, G. A. & Taylor, L. A. Vesta as the howardite, eucrite and diogenite parent body: implications for the size of a core and for large-scale differentiation. Meteorit. Planet. Sci. 32, 825–840 (1997)

    Article  CAS  ADS  Google Scholar 

  6. Righter, K. & Drake, M. J. A magma ocean on Vesta: core formation and petrogenesis of eucrites and diogenites. Meteorit. Planet. Sci. 32, 929–944 (1997)

    Article  CAS  ADS  Google Scholar 

  7. Mandler, B. E. & Elkins-Tanton, L. T. The origin of eucrites, diogenites, and olivine diogenites: magma ocean crystallization and shallow magma chamber processes on Vesta. Meteorit. Planet. Sci. 48 1–17 http://dx.doi.org/10.1111/maps.12135 (2013)

    Article  Google Scholar 

  8. Toplis, M. J. et al. Chondritic models of 4 Vesta: implications for geochemical and geophysical properties. Meteorit. Planet. Sci. 16, 1–16 (2013)

    Google Scholar 

  9. Ammannito, E. et al. Vestan lithologies mapped by the visual and infrared spectrometer on Dawn. Meteorit. Planet. Sci. 48 1–14 http://dx.doi.org/10.1111/maps.12192 (2013)

    Article  Google Scholar 

  10. De Sanctis, M. C. et al. Spectroscopic characterization of mineralogy and its diversity across Vesta. Science 336, 697–700 (2012)

    Article  CAS  ADS  Google Scholar 

  11. McSween, H. Y. et al. Composition of the Rheasilvia basin, a window into Vesta’s interior. J. Geophys. Res. 118, 1–12 (2013)

    Article  Google Scholar 

  12. Beck, A. W. et al. Challenges in detecting olivine on the surface of 4 Vesta. Meteorit. Planet. Sci. 48 1–11 http://dx.doi.org/10.1111/maps.12160 (2013)

    Article  Google Scholar 

  13. McSween, H. Y. et al. Dawn; the Vesta-HED connection; and the geologic context for eucrites, diogenites, and howardites. Meteorit. Planet. Sci. 48, 2090–2104 (2013)

    Article  CAS  ADS  Google Scholar 

  14. Binzel, R. P. & Xu, S. Chips off of asteroid 4 Vesta: evidence for the parent body of basaltic achondrite meteorites. Science 260, 186–191 (1993)

    Article  CAS  ADS  Google Scholar 

  15. Bus, S. J. Evidence for spectral color variation within the Vesta family. In 8th Workshop on ‘Catastrophic Disruption in the Solar System’http://www.cd8.hawaii-conference.com/wp-content/uploads/2013/06/CD8_abs_Bus.pdf (2013)

  16. Nesvorný, D. et al. Fugitives from the Vesta family. Icarus 193, 85–95 (2008)

    Article  ADS  Google Scholar 

  17. Beck, A. W. & McSween, H. Y. Diogenites as polymict breccias composed of orthopyroxenite and harzburgite. Meteorit. Planet. Sci. 45, 850–872 (2010)

    Article  CAS  ADS  Google Scholar 

  18. Mayne, R. G., Sunshine, J. M., McSween Jr, H. Y., Bus, S. J. & McCoy, T. J. The origin of Vesta’s crust: insights from spectroscopy of the Vestoids. Icarus 214, 147–160 (2011)

    Article  CAS  ADS  Google Scholar 

  19. Reddy, V., Nathues, A. & Gaffey, M. J. First fragment of asteroid 4 Vesta’s mantle detected. Icarus 212, 175–179 (2011)

    Article  CAS  ADS  Google Scholar 

  20. Buratti, B. J. et al. Vesta, vestoids, and the HED meteorites: interconnections and differences based on Dawn Framing Camera observations. J. Geophys. Res. 118, 1991–2003 (2013)

    Article  CAS  Google Scholar 

  21. Park, R. S. et al. Gravity field expansion in ellipsoidal harmonic and polyhedral internal representations applied to Vesta. Icarus http://dx.doi.org/10.1016/j.icarus.2013.12.005 (in the press)

  22. Greenwood, R. C. et al. The oxygen isotope composition of diogenites: evidence for early global melting on a single, compositionally diverse, HED parent body. Earth Planet. Sci. Lett. 390, 165–174 (2014)

    Article  CAS  ADS  Google Scholar 

  23. Barrat, J.-A., Yamaguchi, A., Zanda, B., Bollinger, C. & Bohn, M. Relative chronology of crust formation on asteroid Vesta: insights from the geochemistry of diogenites. Geochim. Cosmochim. Acta 74, 6218–6231 (2010)

    Article  CAS  ADS  Google Scholar 

  24. Yamaguchi, A., Barrat, J.-A., Ito, M. & Bohn, M. Posteucritic magmatism on Vesta: evidence from the petrology and thermal history of diogenites. J. Geophys. Res. 116, E08009 (2011)

    ADS  Google Scholar 

  25. Ammannito, E. et al. Olivine in an unexpected location on Vesta’s surface. Nature 504, 122–125 (2013)

    Article  CAS  ADS  Google Scholar 

  26. Tera, F., Eugster, O., Burnett, D. S. & Wasserburg, G. J. Comparative study of Li, Na, K, Rb, Cs, Ca, Sr and Ba abundances in achondrites and in Apollo 11 lunar samples. Proc. Apollo 11 Lunar Sci. Conf. 2, 1637–1657 (1970)

    CAS  ADS  Google Scholar 

  27. Hans, U., Kleine, T. & Bourdon, B. Rb–Sr chronology of volatile depletion in differentiated protoplanets: BABI, ADOR and ALL revisited. Earth Planet. Sci. Lett. 374, 204–214 (2013)

    Article  CAS  ADS  Google Scholar 

  28. Clénet, H. et al. A new systematic approach using the Modified Gaussian Model: insight for the characterization of chemical composition of olivines, pyroxenes and olivine–pyroxene mixtures. Icarus 213, 404–422 (2011)

    Article  ADS  Google Scholar 

  29. Russell, C. T. et al. Dawn at Vesta: testing the protoplanetary paradigm. Science 336, 684–686 (2012)

    Article  CAS  ADS  Google Scholar 

  30. De Sanctis, M. C. et al. The VIR spectrometer. Space Sci. Rev. 163, 329–369 (2011)

    Article  ADS  Google Scholar 

  31. Anderson, J. et al. Isis cartographic tools for the Dawn Framing Camera and Visual and Infrared Spectrometer. AGU Fall Meet. Abstr. U31A–0009 (American Geophysical Union, 2011)

  32. Reddy, V. et al. Color and albedo heterogeneity of Vesta from Dawn. Science 336, 700–704 (2012)

    Article  CAS  ADS  Google Scholar 

  33. De Sanctis, M. C. et al. Vesta’s mineralogical composition as revealed by the visible and infrared spectrometer on Dawn. Meteorit. Planet. Sci. 48 1–19 http://dx.doi.org/10.1111/maps.12138 (2013)

    Article  Google Scholar 

  34. Li, J.-Y. et al. Photometric properties of Vesta. In Asteroids, Comets, Meteors Conf. (eds Li, J.-Y. et al.) abstr. 6387. (2012)

  35. Adams, J. B. Visible and near IR diffuse reflectance spectra of pyroxenes as applied to remote sensing of solid objects in the solar system. J. Geophys. Res. 79, 4829–4836 (1974)

    Article  CAS  ADS  Google Scholar 

  36. Singer, R. B. Near-infrared spectral reflectance of mineral mixtures: systematic combinations of pyroxenes, olivine and iron oxides. J. Geophys. Res. 86, 7967–7982 (1981)

    Article  CAS  ADS  Google Scholar 

  37. Cloutis, E. A. & Gaffey, M. J. Spectral-compositional variations in the constituent minerals of mafic and ultramafic assemblages and remote sensing implications. Earth Moon Planets 53, 11–53 (1991)

    Article  CAS  ADS  Google Scholar 

  38. Sunshine, J. M., Pieters, C. M. & Pratt, S. F. Deconvolution of mineral absorption bands: an improved approach. J. Geophys. Res. 95, 6955–6966 (1990)

    Article  ADS  Google Scholar 

  39. Sunshine, J. M. & Pieters, C. M. Estimating modal abundances from the spectra of natural and laboratory pyroxene mixtures using the modified Gaussian model. J. Geophys. Res. 98, 9075–9087 (1993)

    Article  CAS  ADS  Google Scholar 

  40. Sunshine, J. M. & Pieters, C. M. Determining the composition of olivine from reflectance spectroscopy. J. Geophys. Res. 103, 13675–13688 (1998)

    Article  CAS  ADS  Google Scholar 

  41. Kanner, L. C., Mustard, J. F. & Gendrin, A. Assessing the limits of the Modified Gaussian Model for remote spectroscopic studies of pyroxenes on Mars. Icarus 187, 442–456 (2007)

    Article  CAS  ADS  Google Scholar 

  42. Clenet, H. Télédétection hyperspectrale: minéralogie et pétrologie, application au volcan Syrtis Major (Mars) et à l’ophiolite d'Oman. PhD thesis, Univ. Toulouse, http://thesesups.ups-tlse.fr/501/ (2009)

  43. Clenet, H., Isaacson, P. J. & Gillet, P. Systematic mapping of mafic minerals in the Copernicus region, the Moon: an improved approach based on Modified Gaussian Model applied to M3 data. Lunar Planet. Sci. Conf. 1822, (2014)

  44. Clenet, H. et al. A systematic mapping procedure based on the Modified Gaussian Model to characterize magmatic units from olivine/pyroxenes mixtures: application to the Syrtis Major volcanic shield on Mars. J. Geophys. Res. 118, 1632–1655 (2013)

    Article  CAS  Google Scholar 

  45. Beck, P. et al. NIR spectral trends of HED meteorites: can we discriminate between the magmatic evolution, mechanical mixing and observation geometry effects? Icarus 216, 560–571 (2011)

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

M.J. acknowledges support from the Swiss National Science Foundation through the Ambizione program. J.-A.B. acknowledges support from the INSU Programme National de Planétologie. E.I.A. was sponsored by the NASA Planetary Geology and Geophysics Program.

Author information

Authors and Affiliations

Authors

Contributions

H.C. analysed data and led the research. M.J. performed the numerical simulations. P.G. initiated the collaboration and funded part of the research. All authors interpreted the results and contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Harold Clenet.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Olivine-diogenite spectra and MGM result for NWA4223.

Olivine–diogenite spectra from meteorites NWA5480 and NWA4223 (57% and 50% olivine respectively) and comparison with a spectrum from diogenite Tatahouine (orthopyroxenite). Spectra are represented in reflectance space (a) and with the continuum removed (b) for visual comparison of the shape of the absorption. The MGM result for the NWA4223 spectrum is represented in c. The parameters (from left to right the centre, width and strength are shown) for each Gaussian function (three for olivine and two for orthopyroxene), the continuum and the residual (root mean square, RMS) are reported. Olivine and pyroxene are both correctly detected. Opx, orthopyroxene; Ol, olivine.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Clenet, H., Jutzi, M., Barrat, JA. et al. A deep crust–mantle boundary in the asteroid 4 Vesta. Nature 511, 303–306 (2014). https://doi.org/10.1038/nature13499

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature13499

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing