Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A close-pair binary in a distant triple supermassive black hole system

Abstract

Galaxies are believed to evolve through merging1, which should lead to some hosting multiple supermassive black holes2,3,4. There are four known triple black hole systems5,6,7,8, with the closest black hole pair being 2.4 kiloparsecs apart (the third component in this system is at 3 kiloparsecs)7, which is far from the gravitational sphere of influence (about 100 parsecs for a black hole with mass one billion times that of the Sun). Previous searches for compact black hole systems concluded that they were rare9, with the tightest binary system having a separation of 7 parsecs (ref. 10). Here we report observations of a triple black hole system at redshift z = 0.39, with the closest pair separated by about 140 parsecs and significantly more distant from Earth than any other known binary of comparable orbital separation. The effect of the tight pair is to introduce a rotationally symmetric helical modulation on the structure of the large-scale radio jets, which provides a useful way to search for other tight pairs without needing extremely high resolution observations. As we found this tight pair after searching only six galaxies, we conclude that tight pairs are more common than hitherto believed, which is an important observational constraint for low-frequency gravitational wave experiments11,12.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: VLBI and JVLA maps of the triple supermassive black hole system in J1502+1115.
Figure 2: Dual/binary AGN confirmed or discovered with direct imaging.
Figure 3: Projected separations of candidate triple AGN.

References

  1. 1

    Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. 2

    Volonteri, M., Haardt, F. & Madau, P. The assembly and merging history of supermassive black holes in hierarchical models of galaxy formation. Astrophys. J. 582, 559–573 (2003)

    ADS  Article  Google Scholar 

  3. 3

    Begelman, M. C., Blandford, R. D. & Rees, M. J. Massive black hole binaries in active galactic nuclei. Nature 287, 307–309 (1980)

    ADS  Article  Google Scholar 

  4. 4

    Kulkarni, G. & Loeb, A. Formation of galactic nuclei with multiple supermassive black holes at high redshifts. Mon. Not. R. Astron. Soc. 422, 1306–1323 (2012)

    ADS  Article  Google Scholar 

  5. 5

    Tonry, J. L. Constraints on the orbits of multiple nuclei in brightest cluster galaxies. Astrophys. J. 279, 13–18 (1984)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Barth, A. J., Bentz, M. C., Greene, J. E. & Ho, L. C. An offset Seyfert 2 nucleus in the minor merger system NGC 3341. Astrophys. J. 683, L119–L122 (2008)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Liu, X., Shen, Y. & Strauss, M. A. Cosmic train wreck by massive black holes: discovery of a kiloparsec-scale triple active galactic nucleus. Astrophys. J. 736, L7 (2011)

    ADS  Article  CAS  Google Scholar 

  8. 8

    Schawinski, K. et al. Evidence for three accreting black holes in a galaxy at z 1.35: a snapshot of recently formed black hole seeds? Astrophys. J. 743, L37 (2011)

    ADS  Article  CAS  Google Scholar 

  9. 9

    Burke-Spolaor, S. A radio census of binary supermassive black holes. Mon. Not. R. Astron. Soc. 410, 2113–2122 (2011)

    ADS  Article  Google Scholar 

  10. 10

    Rodriguez, C. et al. A compact supermassive binary black hole system. Astrophys. J. 646, 49–60 (2006)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Wyithe, J. S. B. & Loeb, A. Low-frequency gravitational waves from massive black hole binaries: predictions for LISA and pulsar timing arrays. Astrophys. J. 590, 691–706 (2003)

    ADS  Article  Google Scholar 

  12. 12

    Sesana, A. Systematic investigation of the expected gravitational wave signal from supermassive black hole binaries in the pulsar timing band. Mon. Not. R. Astron. Soc. 433, L1–L5 (2013)

    ADS  Article  Google Scholar 

  13. 13

    Smith, K. L. et al. A search for binary active galactic nuclei: double-peaked [O III] AGNs in the Sloan Digital Sky Survey. Astrophys. J. 716, 866–877 (2010)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Fu, H., Myers, A. D., Djorgovski, S. G. & Yan, L. Mergers in double-peaked [O III] active galactic nuclei. Astrophys. J. 733, 103–109 (2011)

    ADS  Article  CAS  Google Scholar 

  15. 15

    Fu, H. et al. A kiloparsec-scale binary active galactic nucleus confirmed by the expanded Very Large Array. Astrophys. J. 740, L44 (2011)

    ADS  Article  CAS  Google Scholar 

  16. 16

    Blandford, R. D. & Königl, A. Relativistic jets as compact radio sources. Astrophys. J. 232, 34–48 (1979)

    ADS  CAS  Article  Google Scholar 

  17. 17

    Hjellming, R. M. & Johnston, K. J. An analysis of the proper motions of SS 433 radio jets. Astrophys. J. 246, L141–L145 (1981)

    ADS  Article  Google Scholar 

  18. 18

    Häring, N. & Rix, H.-W. On the black hole mass-bulge mass relation. Astrophys. J. 604, L89–L92 (2004)

    ADS  Article  Google Scholar 

  19. 19

    Wilman, R. J. et al. A semi-empirical simulation of the extragalactic radio continuum sky for next generation radio telescopes. Mon. Not. R. Astron. Soc. 388, 1335–1348 (2008)

    ADS  Google Scholar 

  20. 20

    Kormendy, J. & Richstone, D. Inward bound—the search for supermassive black holes in galactic nuclei. Annu. Rev. Astron. Astrophys. 33, 581–624 (1995)

    ADS  Article  Google Scholar 

  21. 21

    Komossa, S. et al. Discovery of a binary active galactic nucleus in the ultraluminous infrared galaxy NGC 6240 using Chandra. Astrophys. J. 582, L15–L19 (2003)

    ADS  CAS  Article  Google Scholar 

  22. 22

    Fabbiano, G., Wang, J., Elvis, M. & Risaliti, G. A close nuclear black-hole pair in the spiral galaxy NGC3393. Nature 477, 431–434 (2011)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23

    Kaastra, J. S. & Roos, N. Massive binary black-holes and wiggling jets. Astron. Astrophys. 254, 96–98 (1992)

    ADS  Google Scholar 

  24. 24

    Valtonen, M. J. et al. A massive binary black-hole system in OJ287 and a test of general relativity. Nature 452, 851–853 (2008)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. 25

    Boroson, T. A. & Lauer, T. R. A candidate sub-parsec supermassive binary black hole system. Nature 458, 53–55 (2009)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26

    Jiang, L. et al. The radio-loud fraction of quasars is a strong function of redshift and optical luminosity. Astrophys. J. 656, 680–690 (2007)

    ADS  Article  Google Scholar 

  27. 27

    Koss, M. et al. Understanding dual active galactic nucleus activation in the nearby Universe. Astrophys. J. 746, L22 (2012)

    ADS  Article  Google Scholar 

  28. 28

    Van Wassenhove, S. et al. Observability of dual active galactic nuclei in merging galaxies. Astrophys. J. 748, L7 (2012)

    ADS  Article  Google Scholar 

  29. 29

    Hoffman, L. & Loeb, A. Dynamics of triple black hole systems in hierarchically merging massive galaxies. Mon. Not. R. Astron. Soc. 377, 957–976 (2007)

    ADS  Article  Google Scholar 

  30. 30

    Blecha, L., Cox, T. J., Loeb, A. & Hernquist, L. Recoiling black holes in merging galaxies: relationship to active galactic nucleus lifetimes, starbursts and the MBH-σ* relation. Mon. Not. R. Astron. Soc. 412, 2154–2182 (2011)

    ADS  CAS  Article  Google Scholar 

  31. 31

    Becker, R. H., White, R. L. & Helfand, D. J. The FIRST Survey: faint images of the radio sky at twenty centimeters. Astrophys. J. 450, 559–577 (1995)

    ADS  Article  Google Scholar 

  32. 32

    Zwart, J. T. L. et al. The Arcminute Microkelvin Imager. Mon. Not. R. Astron. Soc. 391, 1545–1558 (2008)

    ADS  CAS  Article  Google Scholar 

  33. 33

    Perley, R. A. & Butler, B. J. An accurate flux density scale from 1 to 50 GHz. Astrophys. J. 204 (Supp.). 19 (2013)

    Article  Google Scholar 

  34. 34

    Kettenis, M., van Langevelde, H. J., Reynolds, C. & Cotton, B. in Astronomical Data Analysis Software and Systems XV (eds Gabriel, C., Arviset, C., Ponz, D. & Enrique, S. ) 497–500 (ASP Conf. Ser. 351, Astronomical Society of the Pacific, 2006)

    Google Scholar 

  35. 35

    Mauch, T. et al. A 325-MHz GMRT survey of the Herschel-ATLAS/GAMA fields. Mon. Not. R. Astron. Soc. 435, 650–662 (2013)

    ADS  Article  Google Scholar 

  36. 36

    Noordam, J. E. & Smirnov, O. M. The MeqTrees software system and its use for third-generation calibration of radio interferometers. Astron. Astrophys. 524, A61 (2010)

    ADS  Article  Google Scholar 

  37. 37

    Ulvestad, J. S., Perley, R. A. & Chandler, C. J. VLA Observational Status Summary. https://science.nrao.edu/facilities/vla/docs/manuals/oss2013b/performance/positional-accuracy (2009)

  38. 38

    Paragi, Z. et al. The inner radio jet region and the complex environment of SS433. Astron. Astrophys. 348, 910–916 (1999)

    ADS  Google Scholar 

  39. 39

    Lobanov, A. P. Ultracompact jets in active galactic nuclei. Astron. Astrophys. 330, 79–89 (1998)

    ADS  Google Scholar 

  40. 40

    Hada, K. et al. An origin of the radio jet in M87 at the location of the central black hole. Nature 477, 185–187 (2011)

    ADS  CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41

    An, T. & Baan, W. A. The dynamic evolution of young extragalactic radio sources. Astrophys. J. 760, 77 (2012)

    ADS  Article  Google Scholar 

  42. 42

    O'Dea, C. P. The compact steep-spectrum and gigahertz peaked-spectrum radio sources. Publ. Astron. Soc. Pacif. 110, 493–532 (1998)

    ADS  Article  Google Scholar 

  43. 43

    Bianchi, S. et al. The NGC 3341 minor merger: a panchromatic view of the active galactic nucleus in a dwarf companion. Mon. Not. R. Astron. Soc. 435, 2335–2344 (2013)

    ADS  Article  Google Scholar 

  44. 44

    Djorgovski, S. G. et al. Discovery of a probable physical triple quasar. Astrophys. J. 662, L1–L5 (2007)

    ADS  Article  Google Scholar 

  45. 45

    Farina, E. P., Montuori, C., Decarli, R. & Fumagalli, M. Caught in the act: discovery of a physical quasar triplet. Mon. Not. R. Astron. Soc. 431, 1019–1025 (2013)

    ADS  CAS  Article  Google Scholar 

  46. 46

    Ge, J. & Owen, F. N. Faraday rotation in cooling flow clusters of galaxies. 2: Survey. Astron. J. 108, 1523–1533 (1994)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Magorrian, A. Karastergiou, S. Ransom and B. Fanaroff for discussions. The European VLBI Network is a joint facility of European, Chinese, South African and other radio astronomy institutes funded by their national research councils. e-VLBI research infrastructure in Europe was supported by the European Union’s Seventh Framework Programme (FP7/2007-2013) under grant agreement number RI-261525 NEXPReS. The financial assistance of the South African SKA Project (SKA SA) towards this research is acknowledged. Opinions expressed and conclusions arrived at are those of the authors and are not necessarily to be attributed to the SKA SA. Z.P. and S.F. acknowledge funding from the Hungarian Scientific Research Fund (OTKA 104539). Z.P. is grateful for funding support from the International Space Science Institute.

Author information

Affiliations

Authors

Contributions

R.P.D. was the Principal Investigator of the project and wrote the paper. Z.P. helped design, schedule, observe and calibrate the EVN observations as well as interpret the results. M.J.J. helped interpret the cosmological and astrophysical importance of the discovery and contributed significantly to the text. M.C. and R.P.F. helped in the binary SMBH interpretation and the physics thereof. S.F. calibrated the 1.7 GHz EVN observation and helped in the VLBI component interpretation. G.B. and I.H. helped with the technical aspects of the JVLA re-analysis and the subtle interferometric effects at play. H.R.K. helped in the VLBI and GMRT proposals and wrote the software to calibrate the GMRT observation. K.G. and C.R. observed and calibrated the 16 GHz AMI observations. All authors contributed to the analysis and text.

Corresponding author

Correspondence to R. P. Deane.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Radio spectrum of the radio components in J1502+1115.

Both J1502S (open red squares) and J1502P (grey squares) are steep-spectrum radio sources between 1.4 and 8 GHz, as measured by JVLA observations. The two flat spectrum cores (J1502SE/SW, filled circles) are the likely cause of the flattened spectrum of J1502S at higher frequency, as measured by the AMI 15.7 GHz detection labelled as J1502+1115 (AMI). Error bars, ± 1s.d. on the flux measurement. J1502+1115 (GMRT) indicates the 610 MHz detection using the GMRT (Methods). Note that J1502SE and J1502SW are shown marginally offset in frequency purely for clearer illustration.

Extended Data Figure 2 Larger field-of-view JVLA 5 GHz map of J1502+1115 to demonstrate map fidelity.

The colour scale shows the same JVLA 5 GHz residuals shown in Fig. 1c but with the full 128 × 128 pixel median map generated from the Monte Carlo realizations. The small filled red square indicates the map boundary of the VLBI map shown in Fig. 1a. The red cross denotes the centroid of the point source subtracted J1502P component. Contour levels are the same as in Fig. 1c. The grey ellipse (lower left) represents the FWHM of the Briggs-weighted (robust = 1) PSF, while the white dot shows the VLBI 5 GHz PSF.

Extended Data Figure 3 Zoom-in of the high-brightness-temperature inner jet emission of J1502S.

The colour scale shows the same JVLA 5 GHz residuals shown in Fig. 1c but imaged with Briggs uv-weighting (robust = 0) to highlight the position angle of the inner northeast J1502S jet. This is misaligned with the vector between J1502SE and J1502SW (red dots) by 45°. The black JVLA 5 GHz contours start at 60 μJy per beam (2σ) and increase in steps of 1σ. The grey ellipse (lower left) represents the FWHM of the Briggs-weighted (robust = 0) PSF, while the white ellipse shows the VLBI 5 GHz PSF. The red square indicates the map boundary of the VLBI map shown in Fig. 1a.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deane, R., Paragi, Z., Jarvis, M. et al. A close-pair binary in a distant triple supermassive black hole system. Nature 511, 57–60 (2014). https://doi.org/10.1038/nature13454

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing