Measurement of the magnetic interaction between two bound electrons of two separate ions

Abstract

Electrons have an intrinsic, indivisible, magnetic dipole aligned with their internal angular momentum (spin). The magnetic interaction between two electronic spins can therefore impose a change in their orientation. Similar dipolar magnetic interactions exist between other spin systems and have been studied experimentally. Examples include the interaction between an electron and its nucleus and the interaction between several multi-electron spin complexes1,2,3,4,5. The challenge in observing such interactions for two electrons is twofold. First, at the atomic scale, where the coupling is relatively large, it is often dominated by the much larger Coulomb exchange counterpart1. Second, on scales that are substantially larger than the atomic, the magnetic coupling is very weak and can be well below the ambient magnetic noise. Here we report the measurement of the magnetic interaction between the two ground-state spin-1/2 valence electrons of two 88Sr+ ions, co-trapped in an electric Paul trap. We varied the ion separation, d, between 2.18 and 2.76 micrometres and measured the electrons’ weak, millihertz-scale, magnetic interaction as a function of distance, in the presence of magnetic noise that was six orders of magnitude larger than the magnetic fields the electrons apply on each other. The cooperative spin dynamics was kept coherent for 15 seconds, during which spin entanglement was generated, as verified by a negative measured value of −0.16 for the swap entanglement witness. The sensitivity necessary for this measurement was provided by restricting the spin evolution to a decoherence-free subspace that is immune to collective magnetic field noise. Our measurements show a d−3.0(4) distance dependence for the coupling, consistent with the inverse-cube law.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Experiment overview.
Figure 2: Characterization of quantum decoherence.
Figure 3: Coherent oscillations due to magnetic spin–spin interaction for d = 2.4 µm.
Figure 4: Magnetic spin–spin interaction as a function of distance.

References

  1. 1

    Budker D., Kimball D. F., DeMille D. P., eds. Atomic Physics: An Exploration through Problems and Solutions 1–50 (Oxford Univ. Press, 2004)

  2. 2

    Stuhler, J. et al. Observation of dipole-dipole interaction in a degenerate quantum gas. Phys. Rev. Lett. 95, 150406 (2005)

    CAS  Article  ADS  Google Scholar 

  3. 3

    Lu, M., Burdick, N. Q., Youn, S. H. & Lev, B. L. Strongly dipolar Bose-Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011)

    Article  ADS  Google Scholar 

  4. 4

    Dolde, F. et al. Room-temperature entanglement between single defect spins in diamond. Nature Phys. 9, 139–143 (2013)

    CAS  Article  ADS  Google Scholar 

  5. 5

    Grinolds, M. S. et al. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nature Phys. 9, 215–219 (2013)

    CAS  Article  ADS  Google Scholar 

  6. 6

    Rugar, D., Budakian, R., Mamin, H. & Chui, B. Single spin detection by magnetic resonance force microscopy. Nature 430, 329–332 (2004)

    CAS  Article  ADS  Google Scholar 

  7. 7

    Hanneke, D., Fogwell, S. & Gabrielse, G. New measurement of the electron magnetic moment and the fine structure constant. Phys. Rev. Lett. 100, 120801 (2008)

    CAS  Article  ADS  Google Scholar 

  8. 8

    Akerman, N., Glickman, Y., Kotler, S., Keselman, A. & Ozeri, R. Quantum control of 88Sr+ in a miniature linear Paul trap. Appl. Phys. B 107, 1167–1174 (2012)

    CAS  Article  ADS  Google Scholar 

  9. 9

    Wineland, D. et al. Experimental issues in coherent quantum-state manipulation of trapped atomic ions. J. Res. Natl. Inst. Stand. Technol. 103, 259–328 (1998)

    CAS  Article  Google Scholar 

  10. 10

    Roos, C. F., Chwalla, M., Kim, K., Riebe, M. & Blatt, R. ‘Designer atoms’ for quantum metrology. Nature 443, 316–319 (2006)

    CAS  Article  ADS  Google Scholar 

  11. 11

    Turchette, Q. A. et al. Heating of trapped ions from the quantum ground state. Phys. Rev. A 61, 063418 (2000)

    Article  ADS  Google Scholar 

  12. 12

    Biercuk, M. J., Uys, H., Britton, J. W., VanDevender, A. P. & Bollinger, J. J. Ultrasensitive detection of force and displacement using trapped ions. Nature Nanotechnol. 5, 646–650 (2010)

    CAS  Article  ADS  Google Scholar 

  13. 13

    Roos, C. F. et al. Bell states of atoms with ultralong lifetimes and their tomographic state analysis. Phys. Rev. Lett. 92, 220402 (2004)

    CAS  Article  ADS  Google Scholar 

  14. 14

    Langer, C. et al. Long-lived qubit memory using atomic ions. Phys. Rev. Lett. 95, 060502 (2005)

    CAS  Article  ADS  Google Scholar 

  15. 15

    Kotler, S., Akerman, N., Glickman, Y., Keselman, A. & Ozeri, R. Single-ion quantum lock-in amplifier. Nature 473, 61–65 (2011)

    CAS  Article  ADS  Google Scholar 

  16. 16

    Schmidt-Kaler, F. & Gerritsma, R. Entangled states of trapped ions allow measuring the magnetic field gradient produced by a single atomic spin. Europhys. Lett. 99, 53001 (2012)

    Article  ADS  Google Scholar 

  17. 17

    Kotler, S., Akerman, N., Glickman, Y. & Ozeri, R. Nonlinear single-spin spectrum analyzer. Phys. Rev. Lett. 110, 110503 (2013)

    Article  ADS  Google Scholar 

  18. 18

    Chou, C. W., Hume, D. B., Rosenband, T. & Wineland, D. J. Optical clocks and relativity. Science 329, 1630–1633 (2010)

    CAS  Article  ADS  Google Scholar 

  19. 19

    Breit, G. The magnetic moment of the electron. Nature 122, 649 (1928)

    CAS  Article  ADS  Google Scholar 

  20. 20

    Sackett, C. A. et al. Experimental entanglement of four particles. Nature 404, 256–259 (2000)

    CAS  Article  ADS  Google Scholar 

  21. 21

    Navon, N. et al. Quantum process tomography of a Mølmer-Sørensen interaction. Preprint at http://arxiv.org/abs/1309.4502 (2013)

  22. 22

    Horodecki, M., Horodecki, P. & Horodecki, R. Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    MathSciNet  CAS  Article  ADS  Google Scholar 

  23. 23

    Moody, J. E. & Wilczek, F. New macroscopic forces? Phys. Rev. D 30, 130–138 (1984)

    CAS  Article  ADS  Google Scholar 

  24. 24

    Ozeri, R. Heisenberg limited metrology using quantum error-correction codes. Preprint at http://arxiv.org/abs/1310.3432 (2013)

  25. 25

    Arrad, G., Vinkler, Y., Aharonov, D. & Retzker, A. Increasing sensing resolution with error correction. Phys. Rev. Lett. 112, 150801 (2014)

    CAS  Article  ADS  Google Scholar 

  26. 26

    Kessler, E. M. et al. Quantum error correction for metrology. Phys. Rev. Lett. 112, 150802 (2014)

    CAS  Article  ADS  Google Scholar 

  27. 27

    Dür, W., Skotiniotis, M., Fröwis, F. & Kraus, B. Improved quantum metrology using quantum error correction. Phys. Rev. Lett. 112, 080801 (2014)

    Article  ADS  Google Scholar 

  28. 28

    Keselman, A., Glickman, Y., Akerman, N., Kotler, S. & Ozeri, R. High-fidelity state detection and tomography of a single-ion Zeeman qubit. New J. Phys. 13, 073027 (2011)

    Article  ADS  Google Scholar 

  29. 29

    Warring, U. et al. Individual-ion addressing with microwave field gradients. Phys. Rev. Lett. 110, 173002 (2013)

    CAS  Article  ADS  Google Scholar 

  30. 30

    Navon, N. et al. Addressing two-level systems variably coupled to an oscillating field. Phys. Rev. Lett. 111, 073001 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank J. Avron for discussions on the entanglement witness. We acknowledge support by the Israeli Science Foundation, the Crown Photonics Center, the German-Israeli Science Foundation and M. Kushner Schnur, Mexico.

Author information

Affiliations

Authors

Contributions

S.K. designed the scheme for measuring spin–spin coupling. S.K. and N.A. performed the measurements. S.K. analysed the results. S.K., N.A., N.N. and Y.G. developed the techniques necessary to experimentally implement the measurement scheme. S.K. and R.O. wrote the paper. R.O. supervised the work. All authors discussed the results and contributed to the manuscript.

Corresponding author

Correspondence to Shlomi Kotler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text and Data: (1) Details of the experimental setup, state preparation, detection and manipulation and also a discussion of motion heating;(2) Analytic derivation of magnetic spin-spin Hamiltonian evolution; (3) Analytic derivation of the parity and swap observables, taking preparation and detection fidelities into account, Allan deviation analysis of swap data and details of the Monte-Carlo swap error estimation; (4) Error analysis of adversary effects including motion heating, micromotion, quantization axis direction fluctuation, trap magnetic fields, spin-orbit coupling and mutually induced magnetic fields. (PDF 417 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kotler, S., Akerman, N., Navon, N. et al. Measurement of the magnetic interaction between two bound electrons of two separate ions. Nature 510, 376–380 (2014). https://doi.org/10.1038/nature13403

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing