Circular polarization in the optical afterglow of GRB 121024A

Abstract

Gamma-ray bursts (GRBs) are most probably powered by collimated relativistic outflows (jets) from accreting black holes at cosmological distances. Bright afterglows are produced when the outflow collides with the ambient medium. Afterglow polarization directly probes the magnetic properties of the jet when measured minutes after the burst, and it probes the geometric properties of the jet and the ambient medium when measured hours to days after the burst1,2,3,4,5. High values of optical polarization detected minutes after the burst of GRB 120308A indicate the presence of large-scale ordered magnetic fields originating from the central engine5 (the power source of the GRB). Theoretical models predict low degrees of linear polarization and no circular polarization at late times6,7,8, when the energy in the original ejecta is quickly transferred to the ambient medium and propagates farther into the medium as a blast wave. Here we report the detection of circularly polarized light in the afterglow of GRB 121024A, measured 0.15 days after the burst. We show that the circular polarization is intrinsic to the afterglow and unlikely to be produced by dust scattering or plasma propagation effects. A possible explanation is to invoke anisotropic (rather than the commonly assumed isotropic) electron pitch-angle distributions, and we suggest that new models are required to produce the complex microphysics of realistic shocks in relativistic jets9,10,11.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Linear polarization of the afterglow of GRB 121024A.
Figure 2: Optical circular polarization measurements of the afterglow of GRB 121024A.
Figure 3: Optical polarimetry of quasars and GRB afterglows compared.

References

  1. 1

    Piran, T. Magnetic fields in gamma-ray bursts: a short overview. AIP Conf. Proc. 784, 164–174 (2005)

    CAS  ADS  Article  Google Scholar 

  2. 2

    Sari, R. Linear polarization and proper motion in the afterglow of beamed gamma-ray bursts. Astrophys. J. 524, L43–L46 (1999)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Ghisellini, G. & Lazzati, D. Polarization light curves and position angle variation of beamed gamma-ray bursts. Mon. Not. R. Astron. Soc. 309, L7–L11 (1999)

    ADS  Article  Google Scholar 

  4. 4

    Rossi, E. M., Lazzati, D., Salmonson, J. D. & Ghisellini, G. The polarization of afterglow emission reveals gamma-ray bursts jet structure. Mon. Not. R. Astron. Soc. 354, 86–100 (2004)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Mundell, C. G. et al. Highly polarized light from stable ordered magnetic fields in GRB 120308A. Nature 504, 119–121 (2013)

    CAS  ADS  Article  Google Scholar 

  6. 6

    Matsumiya, M. & Ioka, K. Circular polarization from gamma-ray burst afterglows. Astrophys. J. 595, L25–L28 (2003)

    ADS  Article  Google Scholar 

  7. 7

    Sagiv, A., Waxman, E. & Loeb, A. Probing the magnetic field structure in gamma-ray bursts through dispersive plasma effects on the afterglow polarization. Astrophys. J. 615, 366–377 (2004)

    CAS  ADS  Article  Google Scholar 

  8. 8

    Toma, K., Ioka, K. & Nakamura, T. Probing the efficiency of electron-proton coupling in relativistic collisionless shocks through the radio polarimetry of gamma-ray burst afterglows. Astrophys. J. 673, L123–L126 (2008)

    CAS  ADS  Article  Google Scholar 

  9. 9

    Spitkovsky, A. Particle acceleration in relativistic collisionless shocks: Fermi process at last? Astrophys. J. 682, L5–L8 (2008)

    ADS  Article  Google Scholar 

  10. 10

    Spitkovsky, A. On the structure of relativistic collisionless shocks in electron-ion plasmas. Astrophys. J. 673, L39–L42 (2008)

    ADS  Article  Google Scholar 

  11. 11

    Hededal, C. B. & Nishikawa, K.-I. The influence of an ambient magnetic field on relativistic collisionless plasma shocks. Astrophys. J. 623, L89–L92 (2005)

    ADS  Article  Google Scholar 

  12. 12

    Pudritz, R. E., Hardcastle, M. J. & Gabuzda, D. C. Magnetic fields in astrophysical jets: from launch to termination. Space Sci. Rev. 169, 27–72 (2012)

    ADS  Article  Google Scholar 

  13. 13

    Lyutikov, M. Magnetocentrifugal launching of jets from discs around Kerr black holes. Mon. Not. R. Astron. Soc. 396, 1545–1552 (2009)

    ADS  Article  Google Scholar 

  14. 14

    Götz, D., Laurent, P., Lebrun, F., Daigne, F. & Bosnjak, Z. Variable polarization measured in the prompt emission of GRB 041219A using IBIS on board INTEGRAL. Astrophys. J. 695, L208–L212 (2009)

    ADS  Article  Google Scholar 

  15. 15

    Yonetoku, D. et al. Magnetic structures in gamma-ray burst jets probed by gamma-ray polarization. Astrophys. J. 758, L1–L6 (2012)

    ADS  Article  Google Scholar 

  16. 16

    Greiner, J. et al. Evolution of the polarization of the optical afterglow of the γ-ray burst GRB 030329. Nature 426, 157–159 (2003)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Wiersema, K. et al. Detailed optical and near-infrared polarimetry, spectroscopy and broadband photometry of the afterglow of GRB 091018: polarization evolution. Mon. Not. R. Astron. Soc. 426, 2–22 (2012)

    ADS  Article  Google Scholar 

  18. 18

    Granot, J. & Taylor, G. B. Radio flares and the magnetic field structure in gamma-ray burst outflows. Astrophys. J. 625, 263–270 (2005)

    CAS  ADS  Article  Google Scholar 

  19. 19

    Pagani, C. et al. GRB 121024A: Swift detection of a burst with an optical counterpart. GCN Circ. 13886, (2012)

  20. 20

    Evans, P. A. et al. Methods and results of an automatic analysis of a complete sample of Swift-XRT observations of GRBs. Mon. Not. R. Astron. Soc. 397, 1177–1201 (2009)

    CAS  ADS  Article  Google Scholar 

  21. 21

    Sari, R., Piran, T. & Narayan, R. Spectra and lightcurves of gamma-ray burst afterglows. Astrophys. J. 497, L17–L20 (1998)

    ADS  Article  Google Scholar 

  22. 22

    Granot, J. & Königl, A. Linear polarisation in gamma-ray bursts: the case for an ordered magnetic field. Astrophys. J. 594, L83–L87 (2003)

    ADS  Article  Google Scholar 

  23. 23

    Hutsemékers, D., Borguet, B., Sluse, D., Cabanac, R. & Lamy, H. Optical circular polarization in quasars. Astron. Astrophys. 520, L7 (2010)

    ADS  Article  Google Scholar 

  24. 24

    Whitney, B. A. & Wolff, M. J. Scattering and absorption by aligned grains in circumstellar environments. Astrophys. J. 574, 205–231 (2002)

    ADS  Article  Google Scholar 

  25. 25

    Fukue, T. et al. Near-infrared circular polarimetry and correlation diagrams in the Orion Becklin-Neugebauer/Kleinman-Low region: contribution of dichroic extinction. Astrophys. J. 692, L88–L91 (2009)

    CAS  ADS  Article  Google Scholar 

  26. 26

    Lazzati, D. et al. Intrinsic and dust-induced polarization in gamma-ray burst afterglows: the case of GRB 021004. Astron. Astrophys. 410, 823–831 (2003)

    ADS  Article  Google Scholar 

  27. 27

    Beloborodov, A. M., Daigne, F., Mochkovitch, R. & Uhm, Z. L. Is gamma-ray burst afterglow emission intrinsically anisotropic? Mon. Not. R. Astron. Soc. 410, 2422–2427 (2011)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Lloyd-Ronning, N. M. & Petrosian, V. Interpreting the behavior of time-resolved gamma-ray burst spectra. Astrophys. J. 565, 182–194 (2002)

    ADS  Article  Google Scholar 

  29. 29

    Kouveliotou, C. et al. NuSTAR observations of GRB 130427A establish a single component synchrotron afterglow origin for the late optical to multi-GeV emission. Astrophys. J. 779, L1 (2013)

    ADS  Article  Google Scholar 

  30. 30

    Ghisellini, G., Tavecchio, F., Bodo, G. & Celotti, A. TeV variability in blazars: how fast can it be? Mon. Not. R. Astron. Soc. 393, L16–L20 (2009)

    ADS  Article  Google Scholar 

  31. 31

    Barthelmy, S. D. et al. GRB 121024A: Swift-BAT refined analysis. GCN Circ. 13889, (2012)

  32. 32

    Tanvir, N. R. et al. GRB121024A: VLT/X-shooter redshift. GCN Circ. 13890, (2012)

  33. 33

    Patat, F. & Romaniello, M. Error analysis for dual-beam optical linear polarimetry. Publ. Astron. Soc. Pacif. 118, 146–161 (2006)

    ADS  Article  Google Scholar 

  34. 34

    Schlegel, D. J., Finkbeiner, D. P. & Davis, M. Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. Astrophys. J. 500, 525–553 (1998)

    ADS  Article  Google Scholar 

  35. 35

    Serkowski, K., Matheson, D. S. & Ford, V. L. Wavelength dependence of interstellar polarisation and ratio of total to selective extinction. Astrophys. J. 196, 261–290 (1975)

    ADS  Article  Google Scholar 

  36. 36

    Bagnulo, S., Szeifert, T., Wade, G. A., Landstreet, J. D. & Mathys, G. Measuring magnetic fields of early-type stars with FORS1 at the VLT. Astron. Astrophys. 389, 191–201 (2002)

    CAS  ADS  Article  Google Scholar 

  37. 37

    FORS Users Manual Issue 91.1 (ESO, Doc. no. VLT-MAN-ESO-13100-1543, 2012); available at http://www.eso.org/sci/facilities/paranal/instruments/fors/doc.html

  38. 38

    Wardle, J. F. C. & Kronberg, P. P. The linear polarisation of quasi-stellar radio sources at 3.71 and 11.1 centimeters. Astrophys. J. 194, 249–255 (1974)

    ADS  Article  Google Scholar 

  39. 39

    Simmons, J. F. L. & Stewart, B. G. Point and interval estimation of the true unbiased degree of linear polarisation in the presence of low signal-to-noise ratios. Astron. Astrophys. 142, 100–106 (1985)

    ADS  Google Scholar 

  40. 40

    Martin, P. G. Interstellar circular polarisation. Mon. Not. R. Astron. Soc. 159, 179–190 (1972)

    CAS  ADS  Article  Google Scholar 

  41. 41

    Klose, S. et al. Prospects for multiwavelength polarisation observations of GRB afterglows and the case GRB 030329. Astron. Astrophys. 420, 899–903 (2004)

    CAS  ADS  Article  Google Scholar 

  42. 42

    Greiner, J. et al. GROND — a 7-channel imager. Publ. Astron. Soc. Pacif. 120, 405–424 (2008)

    ADS  Article  Google Scholar 

  43. 43

    Hjorth, J. et al. The optically unbiased gamma-ray burst host (TOUGH) survey. I. Survey design and catalogs. Astrophys. J. 756, 187–202 (2012)

    ADS  Article  Google Scholar 

  44. 44

    Pei, Y. C. Interstellar dust from the Milky Way to the Magellanic Clouds. Astrophys. J. 395, 130–139 (1992)

    ADS  Article  Google Scholar 

  45. 45

    Melrose, D. B. Non-thermal Processes in Diffuse Magnetised Plasmas Vol. 1 (Gordon & Breach, 1980)

    Google Scholar 

Download references

Acknowledgements

This work is based on observations made with ESO telescopes at the Paranal Observatory under programme 090.D-0789. We thank all ING staff for their support of ACAM ToO observations. K.W. thanks J. Hinton for discussions. K.W. was supported by STFC. K.T. was supported by a JSPS Research Fellowship for Young Scientists no. 231446. A.J.v.d.H., R.A.M.J.W. and A.R. were supported by the European Research Council via Advanced Investigator grant no. 247295. R.L.C.S. was supported by a Royal Society Fellowship. Y.F. was supported by the 973 Programme of China, under grant 2013CB837000. D.M.R. was supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme under contract no. IEF 274805. This work was supported by the Australian Research Council (grant DP120102393). The William Herschel telescope and its override programme are operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias. This work made use of data supplied by the UK Swift Science Data Centre at the University of Leicester, funded by the UK Space Agency.

Author information

Affiliations

Authors

Contributions

K.W. and S.C. jointly led the VLT observing time proposals and defined the observing strategy. K.W. acquired, reduced and analysed the VLT data and took primary responsibility for writing the text of the paper; S.C. performed an independent data analysis. K.T., A.J.v.d.H. and M.M. provided the theoretical interpretation of the observations. K.V. and J.G. analysed the GROND data. O.E.H. led the WHT observing time proposal. All authors contributed to refining the text of the paper, or assisted in obtaining parts of the presented data set.

Corresponding author

Correspondence to K. Wiersema.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Host galaxy and afterglow image.

Left, VLT FORS2 Rspecial-band acquisition image, with the afterglow indicated by broken lines. Right, detection of the host galaxy in the late-time WHT ACAM r-band imaging.

Extended Data Figure 2 Polarimetry mask and afterglow brightness.

A small section of a single FORS2 Rspecial-band polarimetric exposure (this is the −45° angle chip 1 frame of the cir4 set), illustrating the shape of the aperture mask and brightness of the afterglow (indicated by an arrow). Each part of the sky that falls into the open part of the rectangular mask is imaged twice, in perpendicular polarizations, the o and e beams, which is why the same objects each time appear in two non-overlapping strips.

Extended Data Figure 3 Optical and X-ray afterglow light curves.

a, Swift XRT X-ray light curve in the time span covered by GROND observations; b, the full XRT light curve. c, Full GROND light curves in all seven bands (key at top right). Overplotted in a and c is the best-fitting smoothly broken power law (Methods), with a host galaxy contribution to the optical data. Residuals of this fit are shown in d.

Extended Data Figure 4 X-ray/optical spectral energy distribution of the afterglow of GRB 121024A.

Shown is a spectral energy distribution using the seven GROND photometric bands and simultaneous Swift XRT X-ray data. The overplotted solid line is the best-fitting absorbed power law; the dashed line shows the best-fitting power law without the effects of reddening and X-ray absorption. The horizontal error bars on the optical and X-ray data show the filter throughput and spectral bin-size, respectively. Vertical error bars show 1σ uncertainties on the fluxes.

Extended Data Table 1 Linear polarimetry results
Extended Data Table 2 Circular polarimetry results
Extended Data Table 3 GROND optical and near-infrared photometry of the afterglow

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wiersema, K., Covino, S., Toma, K. et al. Circular polarization in the optical afterglow of GRB 121024A. Nature 509, 201–204 (2014). https://doi.org/10.1038/nature13237

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.