Predicting biodiversity change and averting collapse in agricultural landscapes


The equilibrium theory of island biogeography1 is the basis for estimating extinction rates2 and a pillar of conservation science3,4. The default strategy for conserving biodiversity is the designation of nature reserves, treated as islands in an inhospitable sea of human activity5. Despite the profound influence of islands on conservation theory and practice3,4, their mainland analogues, forest fragments in human-dominated landscapes, consistently defy expected biodiversity patterns based on island biogeography theory6,7,8,9,10,11,12,13. Countryside biogeography is an alternative framework, which recognizes that the fate of the world’s wildlife will be decided largely by the hospitality of agricultural or countryside ecosystems12,14,15,16,17. Here we directly test these biogeographic theories by comparing a Neotropical countryside ecosystem with a nearby island ecosystem, and show that each supports similar bat biodiversity in fundamentally different ways. The island ecosystem conforms to island biogeographic predictions of bat species loss, in which the water matrix is not habitat. In contrast, the countryside ecosystem has high species richness and evenness across forest reserves and smaller forest fragments. Relative to forest reserves and fragments, deforested countryside habitat supports a less species-rich, yet equally even, bat assemblage. Moreover, the bat assemblage associated with deforested habitat is compositionally novel because of predictable changes in abundances by many species using human-made habitat. Finally, we perform a global meta-analysis of bat biogeographic studies, spanning more than 700 species. It generalizes our findings, showing that separate biogeographic theories for countryside and island ecosystems are necessary. A theory of countryside biogeography is essential to conservation strategy in the agricultural ecosystems that comprise roughly half of the global land surface and are likely to increase even further14.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Hypothetical biodiversity changes in countryside and island ecosystems.
Figure 2: Bat sampling locations.
Figure 3: Countryside and island bat biodiversity patterns.
Figure 4: Bat species richness responses in countryside and island ecosystems worldwide.

Change history

  • 07 May 2014

    Two reference numbers were incorrect in the Methods section, and have been fixed.


  1. 1

    MacArthur, R. & Wilson, E. The Theory of Island Biogeography 203 (Princeton Univ. Press, 1967)

    Google Scholar 

  2. 2

    Millennium Ecosystem Assessment. Ecosystems and Human Well-being (Island Press and World Resources Institute, 2005)

  3. 3

    Simberloff, D. & Abele, L. Island biogeography theory and conservation practice. Science 191, 285–286 (1976)

    CAS  Article  ADS  PubMed  Google Scholar 

  4. 4

    Hanski, I. & Gilpin, M. Metapopulation dynamics. Biol. J. Linn. Soc. 42, 3–16 (1991)

    Article  Google Scholar 

  5. 5

    Wilson, E. & Willis, E. in Ecology and Evolution of Communities (eds Cody, M. L. & Diamond, J. M. ) 522–534 (Belknap, 1975)

    Google Scholar 

  6. 6

    Laurance, W. F. et al. Ecosystem decay of Amazonian forest fragments. Conserv. Biol. 16, 605–618 (2002)

    Article  Google Scholar 

  7. 7

    Debinski, D. & Holt, R. A survey and overview of habitat fragmentation experiments. Conserv. Biol. 14, 342–355 (2000)

    Article  Google Scholar 

  8. 8

    Laurance, W. Theory meets reality: How habitat fragmentation research has transcended island biogeographic theory. Biol. Conserv. 141, 1731–1744 (2008)

    Article  Google Scholar 

  9. 9

    Laurance, W. et al. Averting biodiversity collapse in tropical forest protected areas. Nature 489, 290–294 (2012)

    CAS  Article  ADS  PubMed  Google Scholar 

  10. 10

    Lomolino, M. A call for a new paradigm of island biogeography. Glob. Ecol. Biogeogr. 9, 1–6 (2000)

    Article  Google Scholar 

  11. 11

    Fahrig, L. Rethinking patch size and isolation effects. J. Biogeogr. 40, 1649–1663 (2013)

    Article  Google Scholar 

  12. 12

    Pereira, H. & Daily, G. Modeling biodiversity dynamics in countryside landscapes. Ecology 87, 1877–1885 (2006)

    Article  PubMed  Google Scholar 

  13. 13

    Guilherme, J. & Pereira, H. Adaptation of bird communities to farmland abandonment in a mountain landscape. PLoS ONE 8, e73619 (2013)

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Mendenhall, C., Kappel, C. & Ehrlich, P. in Encyclopedia of Biodiversity (ed. Levin, S. ) 347–360 (Elsevier, 2013)

    Google Scholar 

  15. 15

    Perfecto, I., Vandermeer, J. & Wright, A. Nature’s Matrix: Linking Agriculture, Conservation and Food Sovereignty 242 (Earthscan, 2009)

    Google Scholar 

  16. 16

    Daily, G. Ecological forecasts. Nature 411, 245 (2001)

    CAS  Article  ADS  PubMed  Google Scholar 

  17. 17

    Daily, G., Ceballos, G., Pacheco, J., Suzán, G. & Sánchez-Azofeifa, A. Countryside biogeography of Neotropical mammals. Conserv. Biol. 17, 1814–1826 (2003)

    Article  Google Scholar 

  18. 18

    Cardinale, B. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012)

    CAS  Article  ADS  Google Scholar 

  19. 19

    Kueffer, C. & Kaiser-Bunbury, C. Reconciling conflicting perspectives for biodiversity conservation in the Anthropocene. Front. Ecol. Environ 10.1890/120201. (2013)

  20. 20

    Kareiva, P. & Marvier, M. What is conservation science? Bioscience 62, 962–969 (2012)

    Article  Google Scholar 

  21. 21

    He, F. & Hubbell, S. Species–area relationships always overestimate extinction rates from habitat loss. Nature 473, 368–371 (2011)

    CAS  Article  ADS  PubMed  Google Scholar 

  22. 22

    Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013)

    CAS  Article  ADS  PubMed  Google Scholar 

  23. 23

    Heise, U. Sense of Place and Sense of Planet: The Environmental Imagination of the Global 250 (Oxford Univ. Press, 2008)

    Google Scholar 

  24. 24

    Tscharntke, T. et al. Global food security, biodiversity conservation and the future of agricultural intensification. Biol. Conserv. 151, 53–59 (2012)

    Article  Google Scholar 

  25. 25

    Rosenzweig, M. Win–Win Ecology: How the Earth’s Species Can Survive in the Midst of Human Enterprise 211 (Oxford Univ. Press, 2003)

    Google Scholar 

  26. 26

    Meyer, C. & Kalko, E. Assemblage-level responses of phyllostomid bats to tropical forest fragmentation. J. Biogeogr. 35, 1711–1726 (2008)

    Article  Google Scholar 

  27. 27

    MacArthur, R., Diamond, J. & Karr, J. Density compensation in island faunas. Ecology 53, 330–342 (1972)

    Article  Google Scholar 

  28. 28

    Reid, J., Holste, E. & Zahawi, R. Artificial bat roosts did not accelerate forest regeneration in abandoned pastures in southern Costa Rica. Biol. Conserv. 167, 9–16 (2013)

    Article  Google Scholar 

  29. 29

    Karp, D. et al. Intensive agriculture erodes β-diversity at large scales. Ecol. Lett. 15, 963–970 (2012)

    Article  PubMed  Google Scholar 

  30. 30

    Rybicki, J. & Hanski, I. Species–area relationships and extinctions caused by habitat loss and fragmentation. Ecol. Lett. 16, 27–38 (2013)

    Article  PubMed  Google Scholar 

  31. 31

    Stiles, F. & Skutch, A. A Guide to the Birds of Costa Rica 632 (Instituto Nacional de Biodiversidad, 1989)

    Google Scholar 

  32. 32

    Holdridge, L. R. Life Zone Ecology 146 (Tropical Science Center, 1979)

    Google Scholar 

  33. 33

    Mendenhall, C., Sekercioglu, C., Oviedo Brenes, F., Ehrlich, P. & Daily, G. Predictive model for sustaining biodiversity in tropical countryside. Proc. Natl Acad. Sci. USA 108, 16313–16316 (2011)

    CAS  Article  ADS  PubMed  Google Scholar 

  34. 34

    Sansonetti, V. Quemé Mis Naves en estas Montañas: La Colonización de la Altiplanicie de Coto Brus y la Funcadión de San Vito de Java 99 (Jiménez & Tanzi, 1995)

    Google Scholar 

  35. 35

    Clement, R. & Horn, S. Pre-Columbian land-use history in Costa Rica. Holocene 11, 419–426 (2001)

    Article  ADS  Google Scholar 

  36. 36

    Mann, C. 1491: New Revelations of the Americas before Columbus 541 (Knopf, 2005)

    Google Scholar 

  37. 37

    Kunz, T. & Parsons, P. Ecological and Behavioral Methods for the Study of Bats 920 (Johns Hopkins Univ. Press, 2011)

    Google Scholar 

  38. 38

    Leigh, E., Jr, Rand, S. & Windsor, D. The Ecology of a Tropical Forest: Seasonal Rhythms and Long-Term changes 480 (Smithsonian Institution Press, 1982)

    Google Scholar 

  39. 39

    Bonaccorso, F., Smythe, N. & Humphrey, S. Improved techniques for marking bats. J. Mamm. 57, 181–182 (1976)

    Article  Google Scholar 

  40. 40

    Leigh, E., Jr, Wright, S., Herre, E. & Putz, F. The decline of tree diversity on newly isolated tropical islands. Evol. Ecol. 7, 76–102 (1993)

    Article  Google Scholar 

  41. 41

    Handley, C., Jr, Wilson, D. & Gardner, A. Demography and Natural History of the Common Fruit Bat, Artibeus jamaicensis, on Barro Colorado Island, Panama 173 (Smithsonian Institution Press, 1991)

    Google Scholar 

  42. 42

    Mendenhall, C., Daily, G. & Ehrlich, P. Improving estimates of biodiversity loss. Biol. Conserv. 151, 32–34 (2012)

    Article  Google Scholar 

  43. 43

    Daily, G. C., Ehrlich, P. R. & Sánchez-Azofeifa, G. A. Countryside biogeography: use of human-dominated habitats by the avifauna of southern Costa Rica. Ecol. Appl. 11, 1–13 (2001)

    Article  Google Scholar 

  44. 44

    Ricketts, T., Daily, G., Ehrlich, P. & Fay, J. Countryside biogeography of moths in a fragmented landscape. Conserv. Biol. 15, 378–388 (2001)

    Article  Google Scholar 

  45. 45

    Horner-Devine, M., Daily, G., Ehrlich, P. & Boggs, C. Countryside biogeography of tropical butterflies. Conserv. Biol. 17, 168–177 (2003)

    Article  Google Scholar 

  46. 46

    Mayfield, M. & Daily, G. Countryside biogeography of Neotropical herbaceous and shrubby plants. Ecol. Appl. 15, 423–439 (2005)

    Article  Google Scholar 

  47. 47

    Brosi, B., Daily, G., Shih, T., Oviedo Brenes, F. & Duran, G. The effects of forest fragmentation on bee communities in tropical countryside. J. Appl. Ecol. 45, 773–783 (2008)

    Article  Google Scholar 

  48. 48

    Karp, D. et al. Forest bolsters bird abundance, pest control and coffee yield. Ecol. Lett. 16, 1339–1347 (2013)

    Article  PubMed  Google Scholar 

  49. 49

    Smithsonian Tropical Research Institute GIS Section. BCI Basemap. Scale 1:50 000 (Smithsonian, 2012)

  50. 50

    Panama Canal Authority Remote Sensing Unit. BCI Landcover Map 2003 (Cobertura Boscosa 2003—Area de BCI). (Panama Canal Authority, 2003)

  51. 51

    Fahrig, L. Rethinking patch size and isolation effects. J. Biogeogr. 40, 1649–1663 (2013)

    Article  Google Scholar 

  52. 52

    Chao, A. Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43, 783–791 (1987)

    CAS  Article  MathSciNet  PubMed  MATH  Google Scholar 

  53. 53

    Chao, A., Chazdon, R., Colwell, R. & Shen, T. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005)

    Article  Google Scholar 

  54. 54

    Zuur, A., Ieno, E., Walker, N., Saveliev, A. & Smith, G. Mixed Effects Models and Extensions in Ecology with R 574 (Springer, 2009)

    Google Scholar 

Download references


We thank P. Ehrlich, E. Kalko, F. Oviedo Brenes, R. Zahawi, L. Frishkoff, K. Holl, H. Kim Frank, M. Knope, J. L. Reid, A. Wrona, H. York and dozens of field assistants and Costa Rican landowners, and the communities and staffs of the Organization for Tropical Studies, Las Cruces Biological Station, the Smithsonian Tropical Research Institute and the Center for Conservation Biology at Stanford University. Research was funded by the Winslow Foundation, the Moore Family Foundation, the German Academic Exchange Service, the German Science Foundation, Peter and Helen Bing, Ralph and Louise Haberfeld, and a Restoration Workshop Research Grant through the Las Cruces Biological Station. C.D.M. and D.S.K. were supported by National Science Foundation Graduate Research Fellowships.

Author information




C.D.M. and G.C.D. conceived the study. C.D.M. collected data from Costa Rica, performed analyses, and wrote the manuscript. C.F.J.M. collected data from Panama. D.S.K. assisted with key elements of analysis. All authors contributed ideas to the manuscript.

Corresponding author

Correspondence to Chase D. Mendenhall.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Extended data figures and tables

Extended Data Figure 1 Bats use a variety of habitats in the countryside ecosystem.

Shown are the proportions of captured individuals from 30 species in different countryside habitats. Forest dependence rank ranges from forest avoidance (left side of x axis) to reserve dependent (right side of x axis) and was determined by comparing relative abundance in reserves (green) with that in coffee plantations (yellow).The proportions of individuals captured in smaller forest fragments of various sizes are also shown. Total numbers of individuals per species are listed parenthetically after abbreviated species names. A total of 4,424 individuals are represented.

Extended Data Figure 2 Assemblage Abundance Shift Index based on ordination analyses of bat abundances and how they collectively shift relative to bat abundances in minimally altered habitat.

The plots demonstrate how the Assemblage Abundance Shift Index accounted for changes in species richness to focus on predicting changes in assemblage-level shifts in abundances between habitats. In both ecosystems regression analyses favoured logarithmic relationships between the abundance-based assemblage similarity of the bats captured in a net relative to the reserve or mainland nets and the observed species richness of the bats captured in the net (see Methods). Logarithmic models (solid lines) outperformed linear models in model comparisons (countryside ecosystem ΔAICc = 22.75; island ecosystem ΔAICc = 5.92). For each ecosystem, logarithmic models were used to calculate the residual assemblage shift for each net that was not explained by changes in species richness but by changes in the abundances of species. The residuals are therefore an index of assemblage abundance shifting after accounting for changes in species richness. Regression coefficients and statistics are described in Extended Data Table 3.

Extended Data Table 1 Summary of model performances of forest habitat comparisons in an island ecosystem and a countryside ecosystem
Extended Data Table 2 Regression coefficients and relevant statistics generated from best-fit models from Extended Data Table 1
Extended Data Table 3 Summary of model performances of ecosystem-specific models
Extended Data Table 4 Regression coefficients and relevant statistics generated from best-fit models from Extended Data Table 3
Extended Data Table 5 Regression coefficients and relevant statistics generated from best-fit models accounting for species richness in the Abundance-Based Assemblage Similarity Index
Extended Data Table 6 Observed diurnal roosts in deforested habitats in the countryside ecosystem

Related audio

Gretchen Daily on why we should turn our attention to countryside conservation.

Supplementary information

Supplementary Data

This file contains studies that compare bat assemblages. (XLSX 19 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mendenhall, C., Karp, D., Meyer, C. et al. Predicting biodiversity change and averting collapse in agricultural landscapes. Nature 509, 213–217 (2014).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.